Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteqex2 Structured version   Visualization version   GIF version

Theorem oteqex2 4923
 Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015.)
Assertion
Ref Expression
oteqex2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V ↔ 𝑇 ∈ V))

Proof of Theorem oteqex2
StepHypRef Expression
1 opeqex 4922 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ V) ↔ (⟨𝑅, 𝑆⟩ ∈ V ∧ 𝑇 ∈ V)))
2 opex 4893 . . 3 𝐴, 𝐵⟩ ∈ V
32biantrur 527 . 2 (𝐶 ∈ V ↔ (⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ V))
4 opex 4893 . . 3 𝑅, 𝑆⟩ ∈ V
54biantrur 527 . 2 (𝑇 ∈ V ↔ (⟨𝑅, 𝑆⟩ ∈ V ∧ 𝑇 ∈ V))
61, 3, 53bitr4g 303 1 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V ↔ 𝑇 ∈ V))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  Vcvv 3186  ⟨cop 4154 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155 This theorem is referenced by:  oteqex  4924
 Copyright terms: Public domain W3C validator