MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ottpos Structured version   Visualization version   GIF version

Theorem ottpos 7905
Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
ottpos (𝐶𝑉 → (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹))

Proof of Theorem ottpos
StepHypRef Expression
1 brtpos 7904 . . 3 (𝐶𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
2 df-br 5070 . . 3 (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹)
3 df-br 5070 . . 3 (⟨𝐵, 𝐴𝐹𝐶 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹)
41, 2, 33bitr3g 315 . 2 (𝐶𝑉 → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹))
5 df-ot 4579 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
65eleq1i 2906 . 2 (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹)
7 df-ot 4579 . . 3 𝐵, 𝐴, 𝐶⟩ = ⟨⟨𝐵, 𝐴⟩, 𝐶
87eleq1i 2906 . 2 (⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹)
94, 6, 83bitr4g 316 1 (𝐶𝑉 → (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wcel 2113  cop 4576  cotp 4578   class class class wbr 5069  tpos ctpos 7894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-ot 4579  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-fv 6366  df-tpos 7895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator