MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ov6g Structured version   Visualization version   GIF version

Theorem ov6g 6795
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.)
Hypotheses
Ref Expression
ov6g.1 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑅 = 𝑆)
ov6g.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)}
Assertion
Ref Expression
ov6g (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem ov6g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-ov 6650 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 eqid 2621 . . . . . 6 𝑆 = 𝑆
3 biidd 252 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑆 = 𝑆𝑆 = 𝑆))
43copsex2g 4956 . . . . . 6 ((𝐴𝐺𝐵𝐻) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) ↔ 𝑆 = 𝑆))
52, 4mpbiri 248 . . . . 5 ((𝐴𝐺𝐵𝐻) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
653adant3 1080 . . . 4 ((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
76adantr 481 . . 3 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
8 eqeq1 2625 . . . . . . . 8 (𝑤 = ⟨𝐴, 𝐵⟩ → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩))
98anbi1d 741 . . . . . . 7 (𝑤 = ⟨𝐴, 𝐵⟩ → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
10 ov6g.1 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑅 = 𝑆)
1110eqeq2d 2631 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (𝑧 = 𝑅𝑧 = 𝑆))
1211eqcoms 2629 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝑧 = 𝑅𝑧 = 𝑆))
1312pm5.32i 669 . . . . . . 7 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆))
149, 13syl6bb 276 . . . . . 6 (𝑤 = ⟨𝐴, 𝐵⟩ → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆)))
15142exbidv 1851 . . . . 5 (𝑤 = ⟨𝐴, 𝐵⟩ → (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆)))
16 eqeq1 2625 . . . . . . 7 (𝑧 = 𝑆 → (𝑧 = 𝑆𝑆 = 𝑆))
1716anbi2d 740 . . . . . 6 (𝑧 = 𝑆 → ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆)))
18172exbidv 1851 . . . . 5 (𝑧 = 𝑆 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆)))
19 moeq 3380 . . . . . . 7 ∃*𝑧 𝑧 = 𝑅
2019mosubop 4971 . . . . . 6 ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)
2120a1i 11 . . . . 5 (𝑤𝐶 → ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))
22 ov6g.2 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)}
23 dfoprab2 6698 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅))}
24 eleq1 2688 . . . . . . . . . . . 12 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤𝐶 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐶))
2524anbi1d 741 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤𝐶𝑧 = 𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)))
2625pm5.32i 669 . . . . . . . . . 10 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤𝐶𝑧 = 𝑅)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)))
27 an12 838 . . . . . . . . . 10 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
2826, 27bitr3i 266 . . . . . . . . 9 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
29282exbii 1774 . . . . . . . 8 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ ∃𝑥𝑦(𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
30 19.42vv 1919 . . . . . . . 8 (∃𝑥𝑦(𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
3129, 30bitri 264 . . . . . . 7 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
3231opabbii 4715 . . . . . 6 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅))} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))}
3322, 23, 323eqtri 2647 . . . . 5 𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))}
3415, 18, 21, 33fvopab3ig 6276 . . . 4 ((⟨𝐴, 𝐵⟩ ∈ 𝐶𝑆𝐽) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆))
35343ad2antl3 1224 . . 3 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆))
367, 35mpd 15 . 2 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆)
371, 36syl5eq 2667 1 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wex 1703  wcel 1989  ∃*wmo 2470  cop 4181  {copab 4710  cfv 5886  (class class class)co 6647  {coprab 6648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pr 4904
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-iota 5849  df-fun 5888  df-fv 5894  df-ov 6650  df-oprab 6651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator