MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt2dxf Structured version   Visualization version   GIF version

Theorem ovmpt2dxf 6739
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpt2dx.1 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
ovmpt2dx.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
ovmpt2dx.3 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)
ovmpt2dx.4 (𝜑𝐴𝐶)
ovmpt2dx.5 (𝜑𝐵𝐿)
ovmpt2dx.6 (𝜑𝑆𝑋)
ovmpt2dxf.px 𝑥𝜑
ovmpt2dxf.py 𝑦𝜑
ovmpt2dxf.ay 𝑦𝐴
ovmpt2dxf.bx 𝑥𝐵
ovmpt2dxf.sx 𝑥𝑆
ovmpt2dxf.sy 𝑦𝑆
Assertion
Ref Expression
ovmpt2dxf (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem ovmpt2dxf
StepHypRef Expression
1 ovmpt2dx.1 . . 3 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
21oveqd 6621 . 2 (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
3 ovmpt2dx.4 . . . 4 (𝜑𝐴𝐶)
4 ovmpt2dxf.px . . . . 5 𝑥𝜑
5 ovmpt2dx.5 . . . . . 6 (𝜑𝐵𝐿)
6 ovmpt2dxf.py . . . . . . 7 𝑦𝜑
7 eqid 2621 . . . . . . . . 9 (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅)
87ovmpt4g 6736 . . . . . . . 8 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
98a1i 11 . . . . . . 7 (𝜑 → ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
106, 9alrimi 2080 . . . . . 6 (𝜑 → ∀𝑦((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
115, 10spsbcd 3431 . . . . 5 (𝜑[𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
124, 11alrimi 2080 . . . 4 (𝜑 → ∀𝑥[𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
133, 12spsbcd 3431 . . 3 (𝜑[𝐴 / 𝑥][𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
145adantr 481 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵𝐿)
15 simplr 791 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴)
163ad2antrr 761 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐴𝐶)
1715, 16eqeltrd 2698 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝐶)
185ad2antrr 761 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐵𝐿)
19 simpr 477 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
20 ovmpt2dx.3 . . . . . . . . 9 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)
2120adantr 481 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐷 = 𝐿)
2218, 19, 213eltr4d 2713 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑦𝐷)
23 ovmpt2dx.2 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
2423anassrs 679 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆)
25 ovmpt2dx.6 . . . . . . . . . 10 (𝜑𝑆𝑋)
26 elex 3198 . . . . . . . . . 10 (𝑆𝑋𝑆 ∈ V)
2725, 26syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ V)
2827ad2antrr 761 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑆 ∈ V)
2924, 28eqeltrd 2698 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑅 ∈ V)
30 biimt 350 . . . . . . 7 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)))
3117, 22, 29, 30syl3anc 1323 . . . . . 6 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)))
3215, 19oveq12d 6622 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
3332, 24eqeq12d 2636 . . . . . 6 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
3431, 33bitr3d 270 . . . . 5 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
35 ovmpt2dxf.ay . . . . . . 7 𝑦𝐴
3635nfeq2 2776 . . . . . 6 𝑦 𝑥 = 𝐴
376, 36nfan 1825 . . . . 5 𝑦(𝜑𝑥 = 𝐴)
38 nfmpt22 6676 . . . . . . . 8 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
39 nfcv 2761 . . . . . . . 8 𝑦𝐵
4035, 38, 39nfov 6630 . . . . . . 7 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
41 ovmpt2dxf.sy . . . . . . 7 𝑦𝑆
4240, 41nfeq 2772 . . . . . 6 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
4342a1i 11 . . . . 5 ((𝜑𝑥 = 𝐴) → Ⅎ𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
4414, 34, 37, 43sbciedf 3453 . . . 4 ((𝜑𝑥 = 𝐴) → ([𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
45 nfcv 2761 . . . . . . 7 𝑥𝐴
46 nfmpt21 6675 . . . . . . 7 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
47 ovmpt2dxf.bx . . . . . . 7 𝑥𝐵
4845, 46, 47nfov 6630 . . . . . 6 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
49 ovmpt2dxf.sx . . . . . 6 𝑥𝑆
5048, 49nfeq 2772 . . . . 5 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
5150a1i 11 . . . 4 (𝜑 → Ⅎ𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
523, 44, 4, 51sbciedf 3453 . . 3 (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
5313, 52mpbid 222 . 2 (𝜑 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
542, 53eqtrd 2655 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wnf 1705  wcel 1987  wnfc 2748  Vcvv 3186  [wsbc 3417  (class class class)co 6604  cmpt2 6606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609
This theorem is referenced by:  ovmpt2dx  6740  elovmpt2rab  6833  elovmpt2rab1  6834  ovmpt3rab1  6844  mpt2xopoveq  7290  fvmpt2curryd  7342  mdetralt2  20334  mdetunilem2  20338  gsummatr01lem4  20383
  Copyright terms: Public domain W3C validator