MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt2g Structured version   Visualization version   GIF version

Theorem ovmpt2g 6960
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovmpt2g.1 (𝑥 = 𝐴𝑅 = 𝐺)
ovmpt2g.2 (𝑦 = 𝐵𝐺 = 𝑆)
ovmpt2g.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpt2g ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpt2g
StepHypRef Expression
1 ovmpt2g.1 . . 3 (𝑥 = 𝐴𝑅 = 𝐺)
2 ovmpt2g.2 . . 3 (𝑦 = 𝐵𝐺 = 𝑆)
31, 2sylan9eq 2814 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
4 ovmpt2g.3 . 2 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
53, 4ovmpt2ga 6955 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1632  wcel 2139  (class class class)co 6813  cmpt2 6815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818
This theorem is referenced by:  ovmpt2  6961  mapvalg  8033  pmvalg  8034  cdaval  9184  genpv  10013  shftfval  14009  symgov  18010  frlmipval  20320  bcthlem1  23321  motplusg  25636  signspval  30938  elghomlem1OLD  33997  paddval  35587  tgrpov  36538  erngmul  36596  erngmul-rN  36604  dvamulr  36802  dvavadd  36805  dvhmulr  36877  djavalN  36926  djhval  37189  mendmulr  38260
  Copyright terms: Public domain W3C validator