Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt2ga Structured version   Visualization version   GIF version

Theorem ovmpt2ga 6743
 Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovmpt2ga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpt2ga.2 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpt2ga ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpt2ga
StepHypRef Expression
1 elex 3198 . 2 (𝑆𝐻𝑆 ∈ V)
2 ovmpt2ga.2 . . . 4 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
32a1i 11 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
4 ovmpt2ga.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
54adantl 482 . . 3 (((𝐴𝐶𝐵𝐷𝑆 ∈ V) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
6 simp1 1059 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐴𝐶)
7 simp2 1060 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐵𝐷)
8 simp3 1061 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝑆 ∈ V)
93, 5, 6, 7, 8ovmpt2d 6741 . 2 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆)
101, 9syl3an3 1358 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  Vcvv 3186  (class class class)co 6604   ↦ cmpt2 6606 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609 This theorem is referenced by:  ovmpt2a  6744  ovmpt2g  6748  elovmpt2  6832  offval  6857  offval3  7107  mptmpt2opabbrd  7193  bropopvvv  7200  reps  13454  hashbcval  15630  setsvalg  15808  ressval  15848  restval  16008  sylow1lem4  17937  sylow3lem2  17964  sylow3lem3  17965  lsmvalx  17975  mvrfval  19339  opsrval  19393  marrepfval  20285  marrepval0  20286  marepvfval  20290  marepvval0  20291  cnmpt12  21380  cnmpt22  21387  qtopval  21408  flimval  21677  fclsval  21722  ucnval  21991  stdbdmetval  22229  resvval  29609  ofcfval3  29942  fmulcl  39214
 Copyright terms: Public domain W3C validator