![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn02 | Structured version Visualization version GIF version |
Description: For the zero-dimensional space, voln* assigns zero to every subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovn02 | ⊢ (voln*‘∅) = (𝑥 ∈ 𝒫 {∅} ↦ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1636 | . . 3 ⊢ ⊤ | |
2 | 0fin 8355 | . . . . . 6 ⊢ ∅ ∈ Fin | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (⊤ → ∅ ∈ Fin) |
4 | 3 | ovnf 41301 | . . . 4 ⊢ (⊤ → (voln*‘∅):𝒫 (ℝ ↑𝑚 ∅)⟶(0[,]+∞)) |
5 | 4 | feqmptd 6412 | . . 3 ⊢ (⊤ → (voln*‘∅) = (𝑥 ∈ 𝒫 (ℝ ↑𝑚 ∅) ↦ ((voln*‘∅)‘𝑥))) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ (voln*‘∅) = (𝑥 ∈ 𝒫 (ℝ ↑𝑚 ∅) ↦ ((voln*‘∅)‘𝑥)) |
7 | reex 10239 | . . . . 5 ⊢ ℝ ∈ V | |
8 | mapdm0 8040 | . . . . 5 ⊢ (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅}) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (ℝ ↑𝑚 ∅) = {∅} |
10 | 9 | pweqi 4306 | . . 3 ⊢ 𝒫 (ℝ ↑𝑚 ∅) = 𝒫 {∅} |
11 | mpteq1 4889 | . . 3 ⊢ (𝒫 (ℝ ↑𝑚 ∅) = 𝒫 {∅} → (𝑥 ∈ 𝒫 (ℝ ↑𝑚 ∅) ↦ ((voln*‘∅)‘𝑥)) = (𝑥 ∈ 𝒫 {∅} ↦ ((voln*‘∅)‘𝑥))) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ 𝒫 (ℝ ↑𝑚 ∅) ↦ ((voln*‘∅)‘𝑥)) = (𝑥 ∈ 𝒫 {∅} ↦ ((voln*‘∅)‘𝑥)) |
13 | elpwi 4312 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 {∅} → 𝑥 ⊆ {∅}) | |
14 | 9 | eqcomi 2769 | . . . . . 6 ⊢ {∅} = (ℝ ↑𝑚 ∅) |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 {∅} → {∅} = (ℝ ↑𝑚 ∅)) |
16 | 13, 15 | sseqtrd 3782 | . . . 4 ⊢ (𝑥 ∈ 𝒫 {∅} → 𝑥 ⊆ (ℝ ↑𝑚 ∅)) |
17 | 16 | ovn0val 41288 | . . 3 ⊢ (𝑥 ∈ 𝒫 {∅} → ((voln*‘∅)‘𝑥) = 0) |
18 | 17 | mpteq2ia 4892 | . 2 ⊢ (𝑥 ∈ 𝒫 {∅} ↦ ((voln*‘∅)‘𝑥)) = (𝑥 ∈ 𝒫 {∅} ↦ 0) |
19 | 6, 12, 18 | 3eqtri 2786 | 1 ⊢ (voln*‘∅) = (𝑥 ∈ 𝒫 {∅} ↦ 0) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ⊤wtru 1633 ∈ wcel 2139 Vcvv 3340 ∅c0 4058 𝒫 cpw 4302 {csn 4321 ↦ cmpt 4881 ‘cfv 6049 (class class class)co 6814 ↑𝑚 cmap 8025 Fincfn 8123 ℝcr 10147 0cc0 10148 +∞cpnf 10283 [,]cicc 12391 voln*covoln 41274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fi 8484 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-ioo 12392 df-ico 12394 df-icc 12395 df-fz 12540 df-fzo 12680 df-fl 12807 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 df-rlim 14439 df-sum 14636 df-prod 14855 df-rest 16305 df-topgen 16326 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-top 20921 df-topon 20938 df-bases 20972 df-cmp 21412 df-ovol 23453 df-vol 23454 df-sumge0 41101 df-ovoln 41275 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |