Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnhoi Structured version   Visualization version   GIF version

Theorem ovnhoi 42879
Description: The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ovnhoi.x (𝜑𝑋 ∈ Fin)
ovnhoi.a (𝜑𝐴:𝑋⟶ℝ)
ovnhoi.b (𝜑𝐵:𝑋⟶ℝ)
ovnhoi.c 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
ovnhoi.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
ovnhoi (𝜑 → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem ovnhoi
Dummy variables 𝑐 𝑑 𝑖 𝑗 𝑛 𝑧 𝑦 𝑤 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovnhoi.x . . 3 (𝜑𝑋 ∈ Fin)
2 ovnhoi.c . . . . 5 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
32a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
4 nfv 1911 . . . . 5 𝑘𝜑
5 ovnhoi.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
65ffvelrnda 6845 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
7 ovnhoi.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87ffvelrnda 6845 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
98rexrd 10685 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
104, 6, 9hoissrrn2 42854 . . . 4 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ (ℝ ↑m 𝑋))
113, 10eqsstrd 4004 . . 3 (𝜑𝐼 ⊆ (ℝ ↑m 𝑋))
121, 11ovnxrcl 42845 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) ∈ ℝ*)
13 icossxr 12815 . . 3 (0[,)+∞) ⊆ ℝ*
14 ovnhoi.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
1514, 1, 5, 7hoidmvcl 42858 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ (0[,)+∞))
1613, 15sseldi 3964 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ ℝ*)
17 fveq2 6664 . . . . . . . 8 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
1817fveq1d 6666 . . . . . . 7 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐼) = ((voln*‘∅)‘𝐼))
1918adantl 484 . . . . . 6 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = ((voln*‘∅)‘𝐼))
20 ixpeq1 8466 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)))
21 ixp0x 8484 . . . . . . . . . . . 12 X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)) = {∅}
2221a1i 11 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
2320, 22eqtrd 2856 . . . . . . . . . 10 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
2423adantl 484 . . . . . . . . 9 ((𝜑𝑋 = ∅) → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
252a1i 11 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
26 reex 10622 . . . . . . . . . . 11 ℝ ∈ V
27 mapdm0 8415 . . . . . . . . . . 11 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
2826, 27ax-mp 5 . . . . . . . . . 10 (ℝ ↑m ∅) = {∅}
2928a1i 11 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (ℝ ↑m ∅) = {∅})
3024, 25, 293eqtr4d 2866 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐼 = (ℝ ↑m ∅))
31 eqimss 4022 . . . . . . . 8 (𝐼 = (ℝ ↑m ∅) → 𝐼 ⊆ (ℝ ↑m ∅))
3230, 31syl 17 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐼 ⊆ (ℝ ↑m ∅))
3332ovn0val 42826 . . . . . 6 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐼) = 0)
3419, 33eqtrd 2856 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = 0)
35 0red 10638 . . . . 5 ((𝜑𝑋 = ∅) → 0 ∈ ℝ)
3634, 35eqeltrd 2913 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ∈ ℝ)
37 eqidd 2822 . . . . 5 ((𝜑𝑋 = ∅) → 0 = 0)
38 fveq2 6664 . . . . . . . 8 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
3938oveqd 7167 . . . . . . 7 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
4039adantl 484 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
415adantr 483 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
42 simpr 487 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
4342feq2d 6494 . . . . . . . 8 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
4441, 43mpbid 234 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
457adantr 483 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
4642feq2d 6494 . . . . . . . 8 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
4745, 46mpbid 234 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
4814, 44, 47hoidmv0val 42859 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
4940, 48eqtrd 2856 . . . . 5 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = 0)
5037, 34, 493eqtr4d 2866 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
5136, 50eqled 10737 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
52 eqid 2821 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
53 eqeq1 2825 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 = 1 ↔ 𝑗 = 1))
5453ifbid 4488 . . . . . . . 8 (𝑛 = 𝑗 → if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))
5554mpteq2dv 5154 . . . . . . 7 (𝑛 = 𝑗 → (𝑘𝑋 ↦ if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
5655cbvmptv 5161 . . . . . 6 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
571, 5, 7, 2, 52, 56ovnhoilem1 42877 . . . . 5 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
5857adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
591adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
60 neqne 3024 . . . . . . 7 𝑋 = ∅ → 𝑋 ≠ ∅)
6160adantl 484 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
625adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
637adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
6414, 59, 61, 62, 63hoidmvn0val 42860 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
6564eqcomd 2827 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (𝐴(𝐿𝑋)𝐵))
6658, 65breqtrd 5084 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
6751, 66pm2.61dan 811 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
6849, 35eqeltrd 2913 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ∈ ℝ)
6950eqcomd 2827 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = ((voln*‘𝑋)‘𝐼))
7068, 69eqled 10737 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
71 fveq1 6663 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (𝑎𝑘) = (𝑐𝑘))
7271fvoveq1d 7172 . . . . . . . . . . 11 (𝑎 = 𝑐 → (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = (vol‘((𝑐𝑘)[,)(𝑏𝑘))))
7372prodeq2ad 41866 . . . . . . . . . 10 (𝑎 = 𝑐 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘))))
7473ifeq2d 4485 . . . . . . . . 9 (𝑎 = 𝑐 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘)))))
75 fveq1 6663 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → (𝑏𝑘) = (𝑑𝑘))
7675oveq2d 7166 . . . . . . . . . . . 12 (𝑏 = 𝑑 → ((𝑐𝑘)[,)(𝑏𝑘)) = ((𝑐𝑘)[,)(𝑑𝑘)))
7776fveq2d 6668 . . . . . . . . . . 11 (𝑏 = 𝑑 → (vol‘((𝑐𝑘)[,)(𝑏𝑘))) = (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
7877prodeq2ad 41866 . . . . . . . . . 10 (𝑏 = 𝑑 → ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
7978ifeq2d 4485 . . . . . . . . 9 (𝑏 = 𝑑 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8074, 79cbvmpov 7243 . . . . . . . 8 (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑m 𝑥), 𝑑 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8180a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑m 𝑥), 𝑑 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
82 oveq2 7158 . . . . . . . 8 (𝑥 = 𝑦 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑦))
83 eqeq1 2825 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
84 prodeq1 15257 . . . . . . . . 9 (𝑥 = 𝑦 → ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))) = ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
8583, 84ifbieq2d 4491 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))) = if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8682, 82, 85mpoeq123dv 7223 . . . . . . 7 (𝑥 = 𝑦 → (𝑐 ∈ (ℝ ↑m 𝑥), 𝑑 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))) = (𝑐 ∈ (ℝ ↑m 𝑦), 𝑑 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
8781, 86eqtrd 2856 . . . . . 6 (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑m 𝑦), 𝑑 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
8887cbvmptv 5161 . . . . 5 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑦 ∈ Fin ↦ (𝑐 ∈ (ℝ ↑m 𝑦), 𝑑 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
8914, 88eqtri 2844 . . . 4 𝐿 = (𝑦 ∈ Fin ↦ (𝑐 ∈ (ℝ ↑m 𝑦), 𝑑 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
90 eqeq1 2825 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))))
9190anbi2d 630 . . . . . . 7 (𝑤 = 𝑧 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))))
9291rexbidv 3297 . . . . . 6 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃ ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))))
93 simpl 485 . . . . . . . . . . . . . . 15 (( = 𝑖𝑗 ∈ ℕ) → = 𝑖)
9493fveq1d 6666 . . . . . . . . . . . . . 14 (( = 𝑖𝑗 ∈ ℕ) → (𝑗) = (𝑖𝑗))
9594coeq2d 5727 . . . . . . . . . . . . 13 (( = 𝑖𝑗 ∈ ℕ) → ([,) ∘ (𝑗)) = ([,) ∘ (𝑖𝑗)))
9695fveq1d 6666 . . . . . . . . . . . 12 (( = 𝑖𝑗 ∈ ℕ) → (([,) ∘ (𝑗))‘𝑘) = (([,) ∘ (𝑖𝑗))‘𝑘))
9796ixpeq2dv 8471 . . . . . . . . . . 11 (( = 𝑖𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
9897iuneq2dv 4935 . . . . . . . . . 10 ( = 𝑖 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
9998sseq2d 3998 . . . . . . . . 9 ( = 𝑖 → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ↔ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)))
100 simpl 485 . . . . . . . . . . . . . . . . 17 (( = 𝑖𝑘𝑋) → = 𝑖)
101100fveq1d 6666 . . . . . . . . . . . . . . . 16 (( = 𝑖𝑘𝑋) → (𝑗) = (𝑖𝑗))
102101coeq2d 5727 . . . . . . . . . . . . . . 15 (( = 𝑖𝑘𝑋) → ([,) ∘ (𝑗)) = ([,) ∘ (𝑖𝑗)))
103102fveq1d 6666 . . . . . . . . . . . . . 14 (( = 𝑖𝑘𝑋) → (([,) ∘ (𝑗))‘𝑘) = (([,) ∘ (𝑖𝑗))‘𝑘))
104103fveq2d 6668 . . . . . . . . . . . . 13 (( = 𝑖𝑘𝑋) → (vol‘(([,) ∘ (𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
105104prodeq2dv 15271 . . . . . . . . . . . 12 ( = 𝑖 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
106105mpteq2dv 5154 . . . . . . . . . . 11 ( = 𝑖 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
107106fveq2d 6668 . . . . . . . . . 10 ( = 𝑖 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
108107eqeq2d 2832 . . . . . . . . 9 ( = 𝑖 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
10999, 108anbi12d 632 . . . . . . . 8 ( = 𝑖 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
110109cbvrexvw 3450 . . . . . . 7 (∃ ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
111110a1i 11 . . . . . 6 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
11292, 111bitrd 281 . . . . 5 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
113112cbvrabv 3491 . . . 4 {𝑤 ∈ ℝ* ∣ ∃ ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
114 simpl 485 . . . . . . . . . 10 ((𝑗 = 𝑛𝑙𝑋) → 𝑗 = 𝑛)
115114fveq2d 6668 . . . . . . . . 9 ((𝑗 = 𝑛𝑙𝑋) → (𝑖𝑗) = (𝑖𝑛))
116115fveq1d 6666 . . . . . . . 8 ((𝑗 = 𝑛𝑙𝑋) → ((𝑖𝑗)‘𝑙) = ((𝑖𝑛)‘𝑙))
117116fveq2d 6668 . . . . . . 7 ((𝑗 = 𝑛𝑙𝑋) → (1st ‘((𝑖𝑗)‘𝑙)) = (1st ‘((𝑖𝑛)‘𝑙)))
118117mpteq2dva 5153 . . . . . 6 (𝑗 = 𝑛 → (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
119118cbvmptv 5161 . . . . 5 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
120119mpteq2i 5150 . . . 4 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↦ (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))))) = (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
121116fveq2d 6668 . . . . . . 7 ((𝑗 = 𝑛𝑙𝑋) → (2nd ‘((𝑖𝑗)‘𝑙)) = (2nd ‘((𝑖𝑛)‘𝑙)))
122121mpteq2dva 5153 . . . . . 6 (𝑗 = 𝑛 → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
123122cbvmptv 5161 . . . . 5 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
124123mpteq2i 5150 . . . 4 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↦ (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))))) = (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
12559, 61, 62, 63, 2, 89, 113, 120, 124ovnhoilem2 42878 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
12670, 125pm2.61dan 811 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
12712, 16, 67, 126xrletrid 12542 1 (𝜑 → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290  ifcif 4466  {csn 4560  cop 4566   ciun 4911   class class class wbr 5058  cmpt 5138   × cxp 5547  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  cmpo 7152  1st c1st 7681  2nd c2nd 7682  m cmap 8400  Xcixp 8455  Fincfn 8503  cr 10530  0cc0 10531  1c1 10532  +∞cpnf 10666  *cxr 10668  cle 10670  cn 11632  [,)cico 12734  cprod 15253  volcvol 24058  Σ^csumge0 42638  voln*covoln 42812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-prod 15254  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060  df-sumge0 42639  df-ovoln 42813
This theorem is referenced by:  vonhoi  42943
  Copyright terms: Public domain W3C validator