Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnhoi Structured version   Visualization version   GIF version

Theorem ovnhoi 41292
Description: The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ovnhoi.x (𝜑𝑋 ∈ Fin)
ovnhoi.a (𝜑𝐴:𝑋⟶ℝ)
ovnhoi.b (𝜑𝐵:𝑋⟶ℝ)
ovnhoi.c 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
ovnhoi.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
ovnhoi (𝜑 → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem ovnhoi
Dummy variables 𝑐 𝑑 𝑖 𝑗 𝑛 𝑧 𝑦 𝑤 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovnhoi.x . . 3 (𝜑𝑋 ∈ Fin)
2 ovnhoi.c . . . . 5 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
32a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
4 nfv 1980 . . . . 5 𝑘𝜑
5 ovnhoi.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
65ffvelrnda 6510 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
7 ovnhoi.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87ffvelrnda 6510 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
98rexrd 10252 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
104, 6, 9hoissrrn2 41267 . . . 4 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
113, 10eqsstrd 3768 . . 3 (𝜑𝐼 ⊆ (ℝ ↑𝑚 𝑋))
121, 11ovnxrcl 41258 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) ∈ ℝ*)
13 icossxr 12422 . . 3 (0[,)+∞) ⊆ ℝ*
14 ovnhoi.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
1514, 1, 5, 7hoidmvcl 41271 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ (0[,)+∞))
1613, 15sseldi 3730 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ ℝ*)
17 fveq2 6340 . . . . . . . 8 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
1817fveq1d 6342 . . . . . . 7 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐼) = ((voln*‘∅)‘𝐼))
1918adantl 473 . . . . . 6 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = ((voln*‘∅)‘𝐼))
20 ixpeq1 8073 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)))
21 ixp0x 8090 . . . . . . . . . . . 12 X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)) = {∅}
2221a1i 11 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
2320, 22eqtrd 2782 . . . . . . . . . 10 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
2423adantl 473 . . . . . . . . 9 ((𝜑𝑋 = ∅) → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
252a1i 11 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
26 reex 10190 . . . . . . . . . . 11 ℝ ∈ V
27 mapdm0 8026 . . . . . . . . . . 11 (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅})
2826, 27ax-mp 5 . . . . . . . . . 10 (ℝ ↑𝑚 ∅) = {∅}
2928a1i 11 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 ∅) = {∅})
3024, 25, 293eqtr4d 2792 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐼 = (ℝ ↑𝑚 ∅))
31 eqimss 3786 . . . . . . . 8 (𝐼 = (ℝ ↑𝑚 ∅) → 𝐼 ⊆ (ℝ ↑𝑚 ∅))
3230, 31syl 17 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐼 ⊆ (ℝ ↑𝑚 ∅))
3332ovn0val 41239 . . . . . 6 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐼) = 0)
3419, 33eqtrd 2782 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = 0)
35 0red 10204 . . . . 5 ((𝜑𝑋 = ∅) → 0 ∈ ℝ)
3634, 35eqeltrd 2827 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ∈ ℝ)
37 eqidd 2749 . . . . 5 ((𝜑𝑋 = ∅) → 0 = 0)
38 fveq2 6340 . . . . . . . 8 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
3938oveqd 6818 . . . . . . 7 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
4039adantl 473 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
415adantr 472 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
42 simpr 479 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
4342feq2d 6180 . . . . . . . 8 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
4441, 43mpbid 222 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
457adantr 472 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
4642feq2d 6180 . . . . . . . 8 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
4745, 46mpbid 222 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
4814, 44, 47hoidmv0val 41272 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
4940, 48eqtrd 2782 . . . . 5 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = 0)
5037, 34, 493eqtr4d 2792 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
5136, 50eqled 10303 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
52 eqid 2748 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
53 eqeq1 2752 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 = 1 ↔ 𝑗 = 1))
5453ifbid 4240 . . . . . . . 8 (𝑛 = 𝑗 → if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))
5554mpteq2dv 4885 . . . . . . 7 (𝑛 = 𝑗 → (𝑘𝑋 ↦ if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
5655cbvmptv 4890 . . . . . 6 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
571, 5, 7, 2, 52, 56ovnhoilem1 41290 . . . . 5 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
5857adantr 472 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
591adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
60 neqne 2928 . . . . . . 7 𝑋 = ∅ → 𝑋 ≠ ∅)
6160adantl 473 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
625adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
637adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
6414, 59, 61, 62, 63hoidmvn0val 41273 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
6564eqcomd 2754 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (𝐴(𝐿𝑋)𝐵))
6658, 65breqtrd 4818 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
6751, 66pm2.61dan 867 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
6849, 35eqeltrd 2827 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ∈ ℝ)
6950eqcomd 2754 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = ((voln*‘𝑋)‘𝐼))
7068, 69eqled 10303 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
71 fveq1 6339 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝑎𝑘) = (𝑐𝑘))
7271oveq1d 6816 . . . . . . . . . . . 12 (𝑎 = 𝑐 → ((𝑎𝑘)[,)(𝑏𝑘)) = ((𝑐𝑘)[,)(𝑏𝑘)))
7372fveq2d 6344 . . . . . . . . . . 11 (𝑎 = 𝑐 → (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = (vol‘((𝑐𝑘)[,)(𝑏𝑘))))
7473prodeq2ad 40296 . . . . . . . . . 10 (𝑎 = 𝑐 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘))))
7574ifeq2d 4237 . . . . . . . . 9 (𝑎 = 𝑐 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘)))))
76 fveq1 6339 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → (𝑏𝑘) = (𝑑𝑘))
7776oveq2d 6817 . . . . . . . . . . . 12 (𝑏 = 𝑑 → ((𝑐𝑘)[,)(𝑏𝑘)) = ((𝑐𝑘)[,)(𝑑𝑘)))
7877fveq2d 6344 . . . . . . . . . . 11 (𝑏 = 𝑑 → (vol‘((𝑐𝑘)[,)(𝑏𝑘))) = (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
7978prodeq2ad 40296 . . . . . . . . . 10 (𝑏 = 𝑑 → ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
8079ifeq2d 4237 . . . . . . . . 9 (𝑏 = 𝑑 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8175, 80cbvmpt2v 6888 . . . . . . . 8 (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑥), 𝑑 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8281a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑥), 𝑑 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
83 oveq2 6809 . . . . . . . 8 (𝑥 = 𝑦 → (ℝ ↑𝑚 𝑥) = (ℝ ↑𝑚 𝑦))
84 eqeq1 2752 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
85 prodeq1 14809 . . . . . . . . 9 (𝑥 = 𝑦 → ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))) = ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
8684, 85ifbieq2d 4243 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))) = if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8783, 83, 86mpt2eq123dv 6870 . . . . . . 7 (𝑥 = 𝑦 → (𝑐 ∈ (ℝ ↑𝑚 𝑥), 𝑑 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
8882, 87eqtrd 2782 . . . . . 6 (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
8988cbvmptv 4890 . . . . 5 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑦 ∈ Fin ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
9014, 89eqtri 2770 . . . 4 𝐿 = (𝑦 ∈ Fin ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
91 eqeq1 2752 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))))
9291anbi2d 742 . . . . . . 7 (𝑤 = 𝑧 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))))
9392rexbidv 3178 . . . . . 6 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))))
94 simpl 474 . . . . . . . . . . . . . . 15 (( = 𝑖𝑗 ∈ ℕ) → = 𝑖)
9594fveq1d 6342 . . . . . . . . . . . . . 14 (( = 𝑖𝑗 ∈ ℕ) → (𝑗) = (𝑖𝑗))
9695coeq2d 5428 . . . . . . . . . . . . 13 (( = 𝑖𝑗 ∈ ℕ) → ([,) ∘ (𝑗)) = ([,) ∘ (𝑖𝑗)))
9796fveq1d 6342 . . . . . . . . . . . 12 (( = 𝑖𝑗 ∈ ℕ) → (([,) ∘ (𝑗))‘𝑘) = (([,) ∘ (𝑖𝑗))‘𝑘))
9897ixpeq2dv 8078 . . . . . . . . . . 11 (( = 𝑖𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
9998iuneq2dv 4682 . . . . . . . . . 10 ( = 𝑖 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
10099sseq2d 3762 . . . . . . . . 9 ( = 𝑖 → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ↔ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)))
101 simpl 474 . . . . . . . . . . . . . . . . 17 (( = 𝑖𝑘𝑋) → = 𝑖)
102101fveq1d 6342 . . . . . . . . . . . . . . . 16 (( = 𝑖𝑘𝑋) → (𝑗) = (𝑖𝑗))
103102coeq2d 5428 . . . . . . . . . . . . . . 15 (( = 𝑖𝑘𝑋) → ([,) ∘ (𝑗)) = ([,) ∘ (𝑖𝑗)))
104103fveq1d 6342 . . . . . . . . . . . . . 14 (( = 𝑖𝑘𝑋) → (([,) ∘ (𝑗))‘𝑘) = (([,) ∘ (𝑖𝑗))‘𝑘))
105104fveq2d 6344 . . . . . . . . . . . . 13 (( = 𝑖𝑘𝑋) → (vol‘(([,) ∘ (𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
106105prodeq2dv 14823 . . . . . . . . . . . 12 ( = 𝑖 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
107106mpteq2dv 4885 . . . . . . . . . . 11 ( = 𝑖 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
108107fveq2d 6344 . . . . . . . . . 10 ( = 𝑖 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
109108eqeq2d 2758 . . . . . . . . 9 ( = 𝑖 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
110100, 109anbi12d 749 . . . . . . . 8 ( = 𝑖 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
111110cbvrexv 3299 . . . . . . 7 (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
112111a1i 11 . . . . . 6 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
11393, 112bitrd 268 . . . . 5 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
114113cbvrabv 3327 . . . 4 {𝑤 ∈ ℝ* ∣ ∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
115 simpl 474 . . . . . . . . . 10 ((𝑗 = 𝑛𝑙𝑋) → 𝑗 = 𝑛)
116115fveq2d 6344 . . . . . . . . 9 ((𝑗 = 𝑛𝑙𝑋) → (𝑖𝑗) = (𝑖𝑛))
117116fveq1d 6342 . . . . . . . 8 ((𝑗 = 𝑛𝑙𝑋) → ((𝑖𝑗)‘𝑙) = ((𝑖𝑛)‘𝑙))
118117fveq2d 6344 . . . . . . 7 ((𝑗 = 𝑛𝑙𝑋) → (1st ‘((𝑖𝑗)‘𝑙)) = (1st ‘((𝑖𝑛)‘𝑙)))
119118mpteq2dva 4884 . . . . . 6 (𝑗 = 𝑛 → (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
120119cbvmptv 4890 . . . . 5 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
121120mpteq2i 4881 . . . 4 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))))) = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
122117fveq2d 6344 . . . . . . 7 ((𝑗 = 𝑛𝑙𝑋) → (2nd ‘((𝑖𝑗)‘𝑙)) = (2nd ‘((𝑖𝑛)‘𝑙)))
123122mpteq2dva 4884 . . . . . 6 (𝑗 = 𝑛 → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
124123cbvmptv 4890 . . . . 5 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
125124mpteq2i 4881 . . . 4 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))))) = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
12659, 61, 62, 63, 2, 90, 114, 121, 125ovnhoilem2 41291 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
12770, 126pm2.61dan 867 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
12812, 16, 67, 127xrletrid 12150 1 (𝜑 → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wne 2920  wrex 3039  {crab 3042  Vcvv 3328  wss 3703  c0 4046  ifcif 4218  {csn 4309  cop 4315   ciun 4660   class class class wbr 4792  cmpt 4869   × cxp 5252  ccom 5258  wf 6033  cfv 6037  (class class class)co 6801  cmpt2 6803  1st c1st 7319  2nd c2nd 7320  𝑚 cmap 8011  Xcixp 8062  Fincfn 8109  cr 10098  0cc0 10099  1c1 10100  +∞cpnf 10234  *cxr 10236  cle 10238  cn 11183  [,)cico 12341  cprod 14805  volcvol 23403  Σ^csumge0 41051  voln*covoln 41225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8470  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ioo 12343  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-rlim 14390  df-sum 14587  df-prod 14806  df-rest 16256  df-topgen 16277  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-top 20872  df-topon 20889  df-bases 20923  df-cmp 21363  df-ovol 23404  df-vol 23405  df-sumge0 41052  df-ovoln 41226
This theorem is referenced by:  vonhoi  41356
  Copyright terms: Public domain W3C validator