Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnlecvr Structured version   Visualization version   GIF version

Theorem ovnlecvr 42834
Description: Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. The statement would also be true with 𝑋 the empty set, but covers are not used for the zero-dimensional case. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnlecvr.x (𝜑𝑋 ∈ Fin)
ovnlecvr.n0 (𝜑𝑋 ≠ ∅)
ovnlecvr.l 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
ovnlecvr.i (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
ovnlecvr.ss (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
Assertion
Ref Expression
ovnlecvr (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
Distinct variable groups:   𝐴,𝑖   𝑖,𝐼,𝑗,𝑘   𝑖,𝐿   𝑖,𝑋,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐿(𝑗,𝑘)

Proof of Theorem ovnlecvr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ovnlecvr.x . . 3 (𝜑𝑋 ∈ Fin)
2 ovnlecvr.n0 . . 3 (𝜑𝑋 ≠ ∅)
3 ovnlecvr.ss . . . 4 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
4 ovnlecvr.i . . . . . . . . 9 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
54ffvelrnda 6845 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋))
6 elmapi 8422 . . . . . . . 8 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
75, 6syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
87hoissrrn 42825 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋))
98ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋))
10 iunss 4961 . . . . 5 ( 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋) ↔ ∀𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋))
119, 10sylibr 236 . . . 4 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋))
123, 11sstrd 3976 . . 3 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
13 eqid 2821 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
141, 2, 12, 13ovnn0val 42827 . 2 (𝜑 → ((voln*‘𝑋)‘𝐴) = inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))
15 ssrab2 4055 . . . 4 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
1615a1i 11 . . 3 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*)
17 nnex 11638 . . . . . . 7 ℕ ∈ V
1817a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
19 icossicc 12818 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
20 nfv 1911 . . . . . . . . 9 𝑘(𝜑𝑗 ∈ ℕ)
211adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
22 ovnlecvr.l . . . . . . . . 9 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
2320, 21, 22, 7hoiprodcl2 42831 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐿‘(𝐼𝑗)) ∈ (0[,)+∞))
2419, 23sseldi 3964 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐿‘(𝐼𝑗)) ∈ (0[,]+∞))
25 eqid 2821 . . . . . . 7 (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))
2624, 25fmptd 6872 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))):ℕ⟶(0[,]+∞))
2718, 26sge0xrcl 42661 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ ℝ*)
28 ovex 7183 . . . . . . . . 9 ((ℝ × ℝ) ↑m 𝑋) ∈ V
2928, 17pm3.2i 473 . . . . . . . 8 (((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈ V)
30 elmapg 8413 . . . . . . . 8 ((((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈ V) → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
3129, 30ax-mp 5 . . . . . . 7 (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
324, 31sylibr 236 . . . . . 6 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
33 coeq2 5723 . . . . . . . . . . . . 13 (𝑖 = (𝐼𝑗) → ([,) ∘ 𝑖) = ([,) ∘ (𝐼𝑗)))
3433fveq1d 6666 . . . . . . . . . . . 12 (𝑖 = (𝐼𝑗) → (([,) ∘ 𝑖)‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
3534fveq2d 6668 . . . . . . . . . . 11 (𝑖 = (𝐼𝑗) → (vol‘(([,) ∘ 𝑖)‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
3635prodeq2ad 41866 . . . . . . . . . 10 (𝑖 = (𝐼𝑗) → ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
37 prodex 15255 . . . . . . . . . . 11 𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ V
3837a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ V)
3922, 36, 5, 38fvmptd3 6785 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐿‘(𝐼𝑗)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
4039mpteq2dva 5153 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
4140fveq2d 6668 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
423, 41jca 514 . . . . . 6 (𝜑 → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
43 nfv 1911 . . . . . . . . . . 11 𝑘 𝑖 = 𝐼
44 fveq1 6663 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
4544coeq2d 5727 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
4645fveq1d 6666 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
4746adantr 483 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
4843, 47ixpeq2d 41323 . . . . . . . . . 10 (𝑖 = 𝐼X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
4948iuneq2d 4940 . . . . . . . . 9 (𝑖 = 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
5049sseq2d 3998 . . . . . . . 8 (𝑖 = 𝐼 → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
5146fveq2d 6668 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
5251prodeq2ad 41866 . . . . . . . . . . 11 (𝑖 = 𝐼 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
5352mpteq2dv 5154 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
5453fveq2d 6668 . . . . . . . . 9 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
5554eqeq2d 2832 . . . . . . . 8 (𝑖 = 𝐼 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
5650, 55anbi12d 632 . . . . . . 7 (𝑖 = 𝐼 → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))))
5756rspcev 3622 . . . . . 6 ((𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
5832, 42, 57syl2anc 586 . . . . 5 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
5927, 58jca 514 . . . 4 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
60 eqeq1 2825 . . . . . . 7 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
6160anbi2d 630 . . . . . 6 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6261rexbidv 3297 . . . . 5 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6362elrab 3679 . . . 4 ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6459, 63sylibr 236 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
65 infxrlb 12721 . . 3 (({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ* ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
6616, 64, 65syl2anc 586 . 2 (𝜑 → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
6714, 66eqbrtrd 5080 1 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290   ciun 4911   class class class wbr 5058  cmpt 5138   × cxp 5547  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400  Xcixp 8455  Fincfn 8503  infcinf 8899  cr 10530  0cc0 10531  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  cn 11632  [,)cico 12734  [,]cicc 12735  cprod 15253  volcvol 24058  Σ^csumge0 42638  voln*covoln 42812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-prod 15254  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060  df-sumge0 42639  df-ovoln 42813
This theorem is referenced by:  ovnsubaddlem1  42846
  Copyright terms: Public domain W3C validator