Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnlecvr2 Structured version   Visualization version   GIF version

Theorem ovnlecvr2 39283
Description: Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ovnlecvr2.x (𝜑𝑋 ∈ Fin)
ovnlecvr2.c (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑋))
ovnlecvr2.d (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑋))
ovnlecvr2.s (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
ovnlecvr2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
ovnlecvr2 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
Distinct variable groups:   𝐶,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑗,𝑘,𝑥   𝜑,𝑎,𝑏,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘,𝑎,𝑏)   𝐶(𝑥,𝑗)   𝐷(𝑥,𝑗)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏)

Proof of Theorem ovnlecvr2
Dummy variables 𝑖 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6087 . . . . . 6 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
21fveq1d 6089 . . . . 5 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
32adantl 480 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
4 ovnlecvr2.s . . . . . . 7 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
54adantr 479 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
6 1nn 10880 . . . . . . . . . . 11 1 ∈ ℕ
7 ne0i 3879 . . . . . . . . . . 11 (1 ∈ ℕ → ℕ ≠ ∅)
86, 7ax-mp 5 . . . . . . . . . 10 ℕ ≠ ∅
98a1i 11 . . . . . . . . 9 (𝜑 → ℕ ≠ ∅)
10 iunconst 4459 . . . . . . . . 9 (ℕ ≠ ∅ → 𝑗 ∈ ℕ {∅} = {∅})
119, 10syl 17 . . . . . . . 8 (𝜑 𝑗 ∈ ℕ {∅} = {∅})
1211adantr 479 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ {∅} = {∅})
13 ixpeq1 7782 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
14 ixp0x 7799 . . . . . . . . . . . 12 X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅}
1514a1i 11 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1613, 15eqtrd 2643 . . . . . . . . . 10 (𝑋 = ∅ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1716adantr 479 . . . . . . . . 9 ((𝑋 = ∅ ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1817iuneq2dv 4472 . . . . . . . 8 (𝑋 = ∅ → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ {∅})
1918adantl 480 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ {∅})
20 reex 9883 . . . . . . . . 9 ℝ ∈ V
21 mapdm0 38161 . . . . . . . . 9 (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅})
2220, 21ax-mp 5 . . . . . . . 8 (ℝ ↑𝑚 ∅) = {∅}
2322a1i 11 . . . . . . 7 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 ∅) = {∅})
2412, 19, 233eqtr4d 2653 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (ℝ ↑𝑚 ∅))
255, 24sseqtrd 3603 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑𝑚 ∅))
2625ovn0val 39223 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0)
273, 26eqtrd 2643 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0)
28 nfv 1829 . . . . 5 𝑗𝜑
29 nnex 10875 . . . . . 6 ℕ ∈ V
3029a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
31 icossicc 12089 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
32 ovnlecvr2.l . . . . . . 7 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
33 ovnlecvr2.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
3433adantr 479 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
35 ovnlecvr2.c . . . . . . . . 9 (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑋))
3635ffvelrnda 6251 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑𝑚 𝑋))
37 elmapi 7742 . . . . . . . 8 ((𝐶𝑗) ∈ (ℝ ↑𝑚 𝑋) → (𝐶𝑗):𝑋⟶ℝ)
3836, 37syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
39 ovnlecvr2.d . . . . . . . . 9 (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑋))
4039ffvelrnda 6251 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑𝑚 𝑋))
41 elmapi 7742 . . . . . . . 8 ((𝐷𝑗) ∈ (ℝ ↑𝑚 𝑋) → (𝐷𝑗):𝑋⟶ℝ)
4240, 41syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
4332, 34, 38, 42hoidmvcl 39255 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,)+∞))
4431, 43sseldi 3565 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,]+∞))
4528, 30, 44sge0ge0mpt 39114 . . . 4 (𝜑 → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
4645adantr 479 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
4727, 46eqbrtrd 4599 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
48 simpl 471 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝜑)
49 neqne 2789 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
5049adantl 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
5133adantr 479 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
52 simpr 475 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
5338ffvelrnda 6251 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ)
5442ffvelrnda 6251 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ)
5554rexrd 9945 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
56 icossre 12083 . . . . . . . . . . . . 13 ((((𝐶𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ*) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
5753, 55, 56syl2anc 690 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
5857ralrimiva 2948 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
59 ss2ixp 7784 . . . . . . . . . . 11 (∀𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ X𝑘𝑋 ℝ)
6058, 59syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ X𝑘𝑋 ℝ)
6120a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
62 ixpconstg 7780 . . . . . . . . . . . 12 ((𝑋 ∈ Fin ∧ ℝ ∈ V) → X𝑘𝑋 ℝ = (ℝ ↑𝑚 𝑋))
6333, 61, 62syl2anc 690 . . . . . . . . . . 11 (𝜑X𝑘𝑋 ℝ = (ℝ ↑𝑚 𝑋))
6463adantr 479 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 ℝ = (ℝ ↑𝑚 𝑋))
6560, 64sseqtrd 3603 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
6665ralrimiva 2948 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
67 iunss 4491 . . . . . . . 8 ( 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑𝑚 𝑋) ↔ ∀𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
6866, 67sylibr 222 . . . . . . 7 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
694, 68sstrd 3577 . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
7069adantr 479 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐴 ⊆ (ℝ ↑𝑚 𝑋))
71 eqid 2609 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
7251, 52, 70, 71ovnn0val 39224 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) = inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))
73 ssrab2 3649 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
7473a1i 11 . . . . 5 ((𝜑𝑋 ≠ ∅) → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*)
7528, 30, 44sge0xrclmpt 39104 . . . . . . . 8 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ*)
7675adantr 479 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ*)
77 opelxpi 5061 . . . . . . . . . . . . . 14 ((((𝐶𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ (ℝ × ℝ))
7853, 54, 77syl2anc 690 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ (ℝ × ℝ))
79 eqid 2609 . . . . . . . . . . . . 13 (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
8078, 79fmptd 6276 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ))
8120, 20xpex 6837 . . . . . . . . . . . . . 14 (ℝ × ℝ) ∈ V
8281a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (ℝ × ℝ) ∈ V)
83 elmapg 7734 . . . . . . . . . . . . 13 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ)))
8482, 34, 83syl2anc 690 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ)))
8580, 84mpbird 245 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
86 eqid 2609 . . . . . . . . . . 11 (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
8785, 86fmptd 6276 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
88 ovex 6554 . . . . . . . . . . . 12 ((ℝ × ℝ) ↑𝑚 𝑋) ∈ V
8988a1i 11 . . . . . . . . . . 11 (𝜑 → ((ℝ × ℝ) ↑𝑚 𝑋) ∈ V)
90 elmapg 7734 . . . . . . . . . . 11 ((((ℝ × ℝ) ↑𝑚 𝑋) ∈ V ∧ ℕ ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)))
9189, 30, 90syl2anc 690 . . . . . . . . . 10 (𝜑 → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)))
9287, 91mpbird 245 . . . . . . . . 9 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
9392adantr 479 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
94 simpr 475 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
95 mptexg 6366 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ Fin → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
9633, 95syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
9796adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
9886fvmpt2 6184 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
9994, 97, 98syl2anc 690 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
10099coeq2d 5193 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗)) = ([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)))
101100fveq1d 6089 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘))
102101adantr 479 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘))
10380adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ))
104 simpr 475 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
105103, 104fvovco 38159 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘) = ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))))
106 simpr 475 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → 𝑘𝑋)
107 opex 4852 . . . . . . . . . . . . . . . . . . . 20 ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V
108107a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V)
10979fvmpt2 6184 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝑋 ∧ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘) = ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
110106, 108, 109syl2anc 690 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘) = ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
111110fveq2d 6091 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
112 fvex 6097 . . . . . . . . . . . . . . . . . . 19 ((𝐶𝑗)‘𝑘) ∈ V
113 fvex 6097 . . . . . . . . . . . . . . . . . . 19 ((𝐷𝑗)‘𝑘) ∈ V
114 op1stg 7048 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗)‘𝑘) ∈ V ∧ ((𝐷𝑗)‘𝑘) ∈ V) → (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘))
115112, 113, 114mp2an 703 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘)
116115a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘))
117111, 116eqtrd 2643 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = ((𝐶𝑗)‘𝑘))
118110fveq2d 6091 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
119112, 113op2nd 7045 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐷𝑗)‘𝑘)
120119a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐷𝑗)‘𝑘))
121118, 120eqtrd 2643 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = ((𝐷𝑗)‘𝑘))
122117, 121oveq12d 6544 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
123122adantlr 746 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
124102, 105, 1233eqtrrd 2648 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
125124ixpeq2dva 7786 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
126125iuneq2dv 4472 . . . . . . . . . . 11 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
1274, 126sseqtrd 3603 . . . . . . . . . 10 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
128127adantr 479 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
129 eqidd 2610 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
13051adantr 479 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
13152adantr 479 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅)
13238adantlr 746 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
13342adantlr 746 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
13432, 130, 131, 132, 133hoidmvn0val 39257 . . . . . . . . . . . 12 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
135134mpteq2dva 4666 . . . . . . . . . . 11 ((𝜑𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))))
136135fveq2d 6091 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
137124eqcomd 2615 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
138137fveq2d 6091 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)) = (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
139138prodeq2dv 14440 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
140139mpteq2dva 4666 . . . . . . . . . . . 12 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))))
141140fveq2d 6091 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
142141adantr 479 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
143129, 136, 1423eqtr4d 2653 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))
144128, 143jca 552 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))))
145 nfcv 2750 . . . . . . . . . . . . 13 𝑗𝑖
146 nfmpt1 4669 . . . . . . . . . . . . 13 𝑗(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
147145, 146nfeq 2761 . . . . . . . . . . . 12 𝑗 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
148 nfcv 2750 . . . . . . . . . . . . . . 15 𝑘𝑖
149 nfcv 2750 . . . . . . . . . . . . . . . 16 𝑘
150 nfmpt1 4669 . . . . . . . . . . . . . . . 16 𝑘(𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
151149, 150nfmpt 4668 . . . . . . . . . . . . . . 15 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
152148, 151nfeq 2761 . . . . . . . . . . . . . 14 𝑘 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
153 fveq1 6086 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑖𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))
154153coeq2d 5193 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗)))
155154fveq1d 6089 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
156155adantr 479 . . . . . . . . . . . . . 14 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
157152, 156ixpeq2d 38045 . . . . . . . . . . . . 13 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
158157adantr 479 . . . . . . . . . . . 12 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
159147, 158iuneq2df 38020 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
160159sseq2d 3595 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
161 nfv 1829 . . . . . . . . . . . . . . . 16 𝑘 𝑗 ∈ ℕ
162152, 161nfan 1815 . . . . . . . . . . . . . . 15 𝑘(𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ)
163155fveq2d 6091 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
164163a1d 25 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
165164adantr 479 . . . . . . . . . . . . . . 15 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
166162, 165ralrimi 2939 . . . . . . . . . . . . . 14 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
167166prodeq2d 14439 . . . . . . . . . . . . 13 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
168147, 167mpteq2da 4665 . . . . . . . . . . . 12 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
169168fveq2d 6091 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))
170169eqeq2d 2619 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))))
171160, 170anbi12d 742 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))))
172171rspcev 3281 . . . . . . . 8 (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
17393, 144, 172syl2anc 690 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
17476, 173jca 552 . . . . . 6 ((𝜑𝑋 ≠ ∅) → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
175 eqeq1 2613 . . . . . . . . 9 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
176175anbi2d 735 . . . . . . . 8 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
177176rexbidv 3033 . . . . . . 7 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
178177elrab 3330 . . . . . 6 ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
179174, 178sylibr 222 . . . . 5 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
180 infxrlb 11994 . . . . 5 (({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ* ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18174, 179, 180syl2anc 690 . . . 4 ((𝜑𝑋 ≠ ∅) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18272, 181eqbrtrd 4599 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18348, 50, 182syl2anc 690 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18447, 183pm2.61dan 827 1 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  {crab 2899  Vcvv 3172  wss 3539  c0 3873  ifcif 4035  {csn 4124  cop 4130   ciun 4449   class class class wbr 4577  cmpt 4637   × cxp 5025  ccom 5031  wf 5785  cfv 5789  (class class class)co 6526  cmpt2 6528  1st c1st 7034  2nd c2nd 7035  𝑚 cmap 7721  Xcixp 7771  Fincfn 7818  infcinf 8207  cr 9791  0cc0 9792  1c1 9793  +∞cpnf 9927  *cxr 9929   < clt 9930  cle 9931  cn 10869  [,)cico 12006  [,]cicc 12007  cprod 14422  volcvol 22983  Σ^csumge0 39038  voln*covoln 39209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-q 11623  df-rp 11667  df-xneg 11780  df-xadd 11781  df-xmul 11782  df-ioo 12008  df-ico 12010  df-icc 12011  df-fz 12155  df-fzo 12292  df-fl 12412  df-seq 12621  df-exp 12680  df-hash 12937  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-clim 14015  df-rlim 14016  df-sum 14213  df-prod 14423  df-rest 15854  df-topgen 15875  df-psmet 19507  df-xmet 19508  df-met 19509  df-bl 19510  df-mopn 19511  df-top 20468  df-bases 20469  df-topon 20470  df-cmp 20947  df-ovol 22984  df-vol 22985  df-sumge0 39039  df-ovoln 39210
This theorem is referenced by:  hspmbllem2  39300
  Copyright terms: Public domain W3C validator