Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnssle Structured version   Visualization version   GIF version

Theorem ovnssle 42850
Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnssle.1 (𝜑𝑋 ∈ Fin)
ovnssle.2 (𝜑𝐴𝐵)
ovnssle.3 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
Assertion
Ref Expression
ovnssle (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))

Proof of Theorem ovnssle
Dummy variables 𝑖 𝑧 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0le0 11741 . . . 4 0 ≤ 0
21a1i 11 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ 0)
3 fveq2 6672 . . . . . . 7 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
43fveq1d 6674 . . . . . 6 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
54adantl 484 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
6 ovnssle.2 . . . . . . . 8 (𝜑𝐴𝐵)
76adantr 483 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐴𝐵)
8 ovnssle.3 . . . . . . . . 9 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
98adantr 483 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋))
10 simpr 487 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
1110oveq2d 7174 . . . . . . . 8 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
129, 11sseqtrd 4009 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m ∅))
137, 12sstrd 3979 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑m ∅))
1413ovn0val 42839 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0)
155, 14eqtrd 2858 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0)
163fveq1d 6674 . . . . . 6 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵))
1716adantl 484 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵))
1812ovn0val 42839 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐵) = 0)
1917, 18eqtrd 2858 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = 0)
2015, 19breq12d 5081 . . 3 ((𝜑𝑋 = ∅) → (((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵) ↔ 0 ≤ 0))
212, 20mpbird 259 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
22 ovnssle.1 . . . 4 (𝜑𝑋 ∈ Fin)
2322adantr 483 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
24 neqne 3026 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2524adantl 484 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
266adantr 483 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴𝐵)
278adantr 483 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋))
28 eqid 2823 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
29 eqid 2823 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
3023, 25, 26, 27, 28, 29ovnsslelem 42849 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
3121, 30pm2.61dan 811 1 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wrex 3141  {crab 3144  wss 3938  c0 4293   ciun 4921   class class class wbr 5068  cmpt 5148   × cxp 5555  ccom 5561  cfv 6357  (class class class)co 7158  m cmap 8408  Xcixp 8463  Fincfn 8511  cr 10538  0cc0 10539  *cxr 10676  cle 10678  cn 11640  [,)cico 12743  cprod 15261  volcvol 24066  Σ^csumge0 42651  voln*covoln 42825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-seq 13373  df-prod 15262  df-ovoln 42826
This theorem is referenced by:  ovnome  42862  hspmbllem3  42917
  Copyright terms: Public domain W3C validator