Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubadd Structured version   Visualization version   GIF version

Theorem ovnsubadd 42853
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnsubadd.1 (𝜑𝑋 ∈ Fin)
ovnsubadd.2 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
Assertion
Ref Expression
ovnsubadd (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem ovnsubadd
Dummy variables 𝑎 𝑒 𝑖 𝑗 𝑘 𝑙 𝑦 𝑧 𝑏 𝑑 𝑓 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6669 . . . . . 6 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
21fveq1d 6671 . . . . 5 (𝑋 = ∅ → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)))
32adantl 484 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)))
4 ovnsubadd.2 . . . . . . . . . . . 12 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
54adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
6 simpr 487 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
75, 6ffvelrnd 6851 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
8 elpwi 4547 . . . . . . . . . 10 ((𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
97, 8syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
109ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
11 iunss 4968 . . . . . . . 8 ( 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋) ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1210, 11sylibr 236 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1312adantr 483 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
14 oveq2 7163 . . . . . . 7 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
1514adantl 484 . . . . . 6 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
1613, 15sseqtrd 4006 . . . . 5 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m ∅))
1716ovn0val 42831 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = 0)
183, 17eqtrd 2856 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = 0)
19 nnex 11643 . . . . . 6 ℕ ∈ V
2019a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
21 ovnsubadd.1 . . . . . . . 8 (𝜑𝑋 ∈ Fin)
2221adantr 483 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
2322, 9ovncl 42848 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((voln*‘𝑋)‘(𝐴𝑛)) ∈ (0[,]+∞))
24 eqid 2821 . . . . . 6 (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛))) = (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))
2523, 24fmptd 6877 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛))):ℕ⟶(0[,]+∞))
2620, 25sge0ge0 42665 . . . 4 (𝜑 → 0 ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2726adantr 483 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2818, 27eqbrtrd 5087 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2921, 12ovnxrcl 42850 . . . 4 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ∈ ℝ*)
3029adantr 483 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ∈ ℝ*)
3120, 25sge0xrcl 42666 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) ∈ ℝ*)
3231adantr 483 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) ∈ ℝ*)
3321ad2antrr 724 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑋 ∈ Fin)
34 neqne 3024 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
3534ad2antlr 725 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑋 ≠ ∅)
364ad2antrr 724 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
37 simpr 487 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
38 eqid 2821 . . . 4 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
39 sseq1 3991 . . . . . 6 (𝑏 = 𝑎 → (𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)))
4039rabbidv 3480 . . . . 5 (𝑏 = 𝑎 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
4140cbvmptv 5168 . . . 4 (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
42 eqid 2821 . . . 4 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
43 fveq2 6669 . . . . . . . . . . . . . . . . . . . . 21 (𝑜 = 𝑗 → (𝑙𝑜) = (𝑙𝑗))
4443coeq2d 5732 . . . . . . . . . . . . . . . . . . . 20 (𝑜 = 𝑗 → ([,) ∘ (𝑙𝑜)) = ([,) ∘ (𝑙𝑗)))
4544fveq1d 6671 . . . . . . . . . . . . . . . . . . 19 (𝑜 = 𝑗 → (([,) ∘ (𝑙𝑜))‘𝑑) = (([,) ∘ (𝑙𝑗))‘𝑑))
4645ixpeq2dv 8476 . . . . . . . . . . . . . . . . . 18 (𝑜 = 𝑗X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = X𝑑𝑋 (([,) ∘ (𝑙𝑗))‘𝑑))
47 fveq2 6669 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑘 → (([,) ∘ (𝑙𝑗))‘𝑑) = (([,) ∘ (𝑙𝑗))‘𝑘))
4847cbvixpv 8478 . . . . . . . . . . . . . . . . . 18 X𝑑𝑋 (([,) ∘ (𝑙𝑗))‘𝑑) = X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)
4946, 48syl6eq 2872 . . . . . . . . . . . . . . . . 17 (𝑜 = 𝑗X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘))
5049cbviunv 4964 . . . . . . . . . . . . . . . 16 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)
5150sseq2i 3995 . . . . . . . . . . . . . . 15 (𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) ↔ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘))
5251rabbii 3473 . . . . . . . . . . . . . 14 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)}
5352mpteq2i 5157 . . . . . . . . . . . . 13 (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)}) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
5453fveq1i 6670 . . . . . . . . . . . 12 ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑑)
55 fveq2 6669 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎))
5654, 55syl5eq 2868 . . . . . . . . . . 11 (𝑑 = 𝑎 → ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎))
5756eleq2d 2898 . . . . . . . . . 10 (𝑑 = 𝑎 → (𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ↔ 𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎)))
58 2fveq3 6674 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑘 → (vol‘(([,) ∘ )‘𝑑)) = (vol‘(([,) ∘ )‘𝑘)))
5958cbvprodv 15269 . . . . . . . . . . . . . . . . 17 𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)) = ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))
6059mpteq2i 5157 . . . . . . . . . . . . . . . 16 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
6160a1i 11 . . . . . . . . . . . . . . 15 (𝑜 = 𝑗 → ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))))
62 fveq2 6669 . . . . . . . . . . . . . . 15 (𝑜 = 𝑗 → (𝑚𝑜) = (𝑚𝑗))
6361, 62fveq12d 6676 . . . . . . . . . . . . . 14 (𝑜 = 𝑗 → (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)) = (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))
6463cbvmptv 5168 . . . . . . . . . . . . 13 (𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜))) = (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))
6564fveq2i 6672 . . . . . . . . . . . 12 ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗))))
6665a1i 11 . . . . . . . . . . 11 (𝑑 = 𝑎 → (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))))
67 fveq2 6669 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((voln*‘𝑋)‘𝑑) = ((voln*‘𝑋)‘𝑎))
6867oveq1d 7170 . . . . . . . . . . 11 (𝑑 = 𝑎 → (((voln*‘𝑋)‘𝑑) +𝑒 𝑓) = (((voln*‘𝑋)‘𝑎) +𝑒 𝑓))
6966, 68breq12d 5078 . . . . . . . . . 10 (𝑑 = 𝑎 → ((Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)))
7057, 69anbi12d 632 . . . . . . . . 9 (𝑑 = 𝑎 → ((𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∧ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)) ↔ (𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓))))
7170rabbidva2 3476 . . . . . . . 8 (𝑑 = 𝑎 → {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)} = {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)})
72 fveq1 6668 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (𝑚𝑗) = (𝑖𝑗))
7372fveq2d 6673 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)) = (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))
7473mpteq2dv 5161 . . . . . . . . . . 11 (𝑚 = 𝑖 → (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗))) = (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗))))
7574fveq2d 6673 . . . . . . . . . 10 (𝑚 = 𝑖 → (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))))
7675breq1d 5075 . . . . . . . . 9 (𝑚 = 𝑖 → ((Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)))
7776cbvrabv 3491 . . . . . . . 8 {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}
7871, 77syl6eq 2872 . . . . . . 7 (𝑑 = 𝑎 → {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)})
7978mpteq2dv 5161 . . . . . 6 (𝑑 = 𝑎 → (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)}) = (𝑓 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}))
80 oveq2 7163 . . . . . . . . 9 (𝑓 = 𝑒 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) = (((voln*‘𝑋)‘𝑎) +𝑒 𝑒))
8180breq2d 5077 . . . . . . . 8 (𝑓 = 𝑒 → ((Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)))
8281rabbidv 3480 . . . . . . 7 (𝑓 = 𝑒 → {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})
8382cbvmptv 5168 . . . . . 6 (𝑓 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})
8479, 83syl6eq 2872 . . . . 5 (𝑑 = 𝑎 → (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
8584cbvmptv 5168 . . . 4 (𝑑 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)})) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
8633, 35, 36, 37, 38, 41, 42, 85ovnsubaddlem2 42852 . . 3 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝑦))
8730, 32, 86xrlexaddrp 41618 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
8828, 87pm2.61dan 811 1 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290  𝒫 cpw 4538   ciun 4918   class class class wbr 5065  cmpt 5145   × cxp 5552  ccom 5558  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405  Xcixp 8460  Fincfn 8508  cr 10535  0cc0 10536  +∞cpnf 10671  *cxr 10673  cle 10675  cn 11637  +crp 12388   +𝑒 cxad 12504  [,)cico 12739  [,]cicc 12740  cprod 15258  volcvol 24063  Σ^csumge0 42643  voln*covoln 42817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-ac2 9884  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-acn 9370  df-ac 9541  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-prod 15259  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-rest 16695  df-0g 16714  df-topgen 16716  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-subg 18275  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19503  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-bases 21553  df-cmp 21994  df-ovol 24064  df-vol 24065  df-sumge0 42644  df-ovoln 42818
This theorem is referenced by:  ovnome  42854  ovnsubadd2lem  42926
  Copyright terms: Public domain W3C validator