![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolctb2 | Structured version Visualization version GIF version |
Description: The volume of a countable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
ovolctb2 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ⊆ ℝ) | |
2 | nnssre 11062 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | unss 3820 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ ℕ ⊆ ℝ) ↔ (𝐴 ∪ ℕ) ⊆ ℝ) | |
4 | 1, 2, 3 | sylanblc 697 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ⊆ ℝ) |
5 | nnenom 12819 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
6 | domentr 8056 | . . . . . . . 8 ⊢ ((𝐴 ≼ ℕ ∧ ℕ ≈ ω) → 𝐴 ≼ ω) | |
7 | 5, 6 | mpan2 707 | . . . . . . 7 ⊢ (𝐴 ≼ ℕ → 𝐴 ≼ ω) |
8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ≼ ω) |
9 | endom 8024 | . . . . . . 7 ⊢ (ℕ ≈ ω → ℕ ≼ ω) | |
10 | 5, 9 | ax-mp 5 | . . . . . 6 ⊢ ℕ ≼ ω |
11 | unctb 9065 | . . . . . 6 ⊢ ((𝐴 ≼ ω ∧ ℕ ≼ ω) → (𝐴 ∪ ℕ) ≼ ω) | |
12 | 8, 10, 11 | sylancl 695 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≼ ω) |
13 | 5 | ensymi 8047 | . . . . 5 ⊢ ω ≈ ℕ |
14 | domentr 8056 | . . . . 5 ⊢ (((𝐴 ∪ ℕ) ≼ ω ∧ ω ≈ ℕ) → (𝐴 ∪ ℕ) ≼ ℕ) | |
15 | 12, 13, 14 | sylancl 695 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≼ ℕ) |
16 | reex 10065 | . . . . . . 7 ⊢ ℝ ∈ V | |
17 | 16 | ssex 4835 | . . . . . 6 ⊢ ((𝐴 ∪ ℕ) ⊆ ℝ → (𝐴 ∪ ℕ) ∈ V) |
18 | 4, 17 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ∈ V) |
19 | ssun2 3810 | . . . . 5 ⊢ ℕ ⊆ (𝐴 ∪ ℕ) | |
20 | ssdomg 8043 | . . . . 5 ⊢ ((𝐴 ∪ ℕ) ∈ V → (ℕ ⊆ (𝐴 ∪ ℕ) → ℕ ≼ (𝐴 ∪ ℕ))) | |
21 | 18, 19, 20 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ℕ ≼ (𝐴 ∪ ℕ)) |
22 | sbth 8121 | . . . 4 ⊢ (((𝐴 ∪ ℕ) ≼ ℕ ∧ ℕ ≼ (𝐴 ∪ ℕ)) → (𝐴 ∪ ℕ) ≈ ℕ) | |
23 | 15, 21, 22 | syl2anc 694 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≈ ℕ) |
24 | ovolctb 23304 | . . 3 ⊢ (((𝐴 ∪ ℕ) ⊆ ℝ ∧ (𝐴 ∪ ℕ) ≈ ℕ) → (vol*‘(𝐴 ∪ ℕ)) = 0) | |
25 | 4, 23, 24 | syl2anc 694 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘(𝐴 ∪ ℕ)) = 0) |
26 | ssun1 3809 | . . 3 ⊢ 𝐴 ⊆ (𝐴 ∪ ℕ) | |
27 | ovolssnul 23301 | . . 3 ⊢ ((𝐴 ⊆ (𝐴 ∪ ℕ) ∧ (𝐴 ∪ ℕ) ⊆ ℝ ∧ (vol*‘(𝐴 ∪ ℕ)) = 0) → (vol*‘𝐴) = 0) | |
28 | 26, 27 | mp3an1 1451 | . 2 ⊢ (((𝐴 ∪ ℕ) ⊆ ℝ ∧ (vol*‘(𝐴 ∪ ℕ)) = 0) → (vol*‘𝐴) = 0) |
29 | 4, 25, 28 | syl2anc 694 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ⊆ wss 3607 class class class wbr 4685 ‘cfv 5926 ωcom 7107 ≈ cen 7994 ≼ cdom 7995 ℝcr 9973 0cc0 9974 ℕcn 11058 vol*covol 23277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-xadd 11985 df-ioo 12217 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-sum 14461 df-xmet 19787 df-met 19788 df-ovol 23279 |
This theorem is referenced by: ovol0 23307 ovolfi 23308 uniiccdif 23392 voliunnfl 33583 volsupnfl 33584 |
Copyright terms: Public domain | W3C validator |