MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolf Structured version   Visualization version   GIF version

Theorem ovolf 23296
Description: The domain and range of the outer volume function. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.)
Assertion
Ref Expression
ovolf vol*:𝒫 ℝ⟶(0[,]+∞)

Proof of Theorem ovolf
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 12012 . . . 4 < Or ℝ*
21infex 8440 . . 3 inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ∈ V
3 df-ovol 23279 . . 3 vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
42, 3fnmpti 6060 . 2 vol* Fn 𝒫 ℝ
5 elpwi 4201 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
6 ovolcl 23292 . . . . 5 (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ ℝ*)
7 ovolge0 23295 . . . . 5 (𝑥 ⊆ ℝ → 0 ≤ (vol*‘𝑥))
8 pnfge 12002 . . . . . 6 ((vol*‘𝑥) ∈ ℝ* → (vol*‘𝑥) ≤ +∞)
96, 8syl 17 . . . . 5 (𝑥 ⊆ ℝ → (vol*‘𝑥) ≤ +∞)
10 0xr 10124 . . . . . 6 0 ∈ ℝ*
11 pnfxr 10130 . . . . . 6 +∞ ∈ ℝ*
12 elicc1 12257 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞)))
1310, 11, 12mp2an 708 . . . . 5 ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞))
146, 7, 9, 13syl3anbrc 1265 . . . 4 (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ (0[,]+∞))
155, 14syl 17 . . 3 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ (0[,]+∞))
1615rgen 2951 . 2 𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞)
17 ffnfv 6428 . 2 (vol*:𝒫 ℝ⟶(0[,]+∞) ↔ (vol* Fn 𝒫 ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞)))
184, 16, 17mpbir2an 975 1 vol*:𝒫 ℝ⟶(0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  cin 3606  wss 3607  𝒫 cpw 4191   cuni 4468   class class class wbr 4685   × cxp 5141  ran crn 5144  ccom 5147   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  supcsup 8387  infcinf 8388  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304  cn 11058  (,)cioo 12213  [,]cicc 12216  seqcseq 12841  abscabs 14018  vol*covol 23277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-ovol 23279
This theorem is referenced by:  ismbl  23340  volf  23343  ovolfs2  23385  ismbl3  40521  ovolsplit  40523
  Copyright terms: Public domain W3C validator