MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficcss Structured version   Visualization version   GIF version

Theorem ovolficcss 24064
Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
ovolficcss (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)

Proof of Theorem ovolficcss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnco2 6100 . . 3 ran ([,] ∘ 𝐹) = ([,] “ ran 𝐹)
2 ffvelrn 6843 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) ∈ ( ≤ ∩ (ℝ × ℝ)))
32elin2d 4175 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) ∈ (ℝ × ℝ))
4 1st2nd2 7722 . . . . . . . . . . 11 ((𝐹𝑦) ∈ (ℝ × ℝ) → (𝐹𝑦) = ⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
53, 4syl 17 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) = ⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
65fveq2d 6668 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) = ([,]‘⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩))
7 df-ov 7153 . . . . . . . . 9 ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) = ([,]‘⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
86, 7syl6eqr 2874 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) = ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))))
9 xp1st 7715 . . . . . . . . . 10 ((𝐹𝑦) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑦)) ∈ ℝ)
103, 9syl 17 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (1st ‘(𝐹𝑦)) ∈ ℝ)
11 xp2nd 7716 . . . . . . . . . 10 ((𝐹𝑦) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑦)) ∈ ℝ)
123, 11syl 17 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (2nd ‘(𝐹𝑦)) ∈ ℝ)
13 iccssre 12812 . . . . . . . . 9 (((1st ‘(𝐹𝑦)) ∈ ℝ ∧ (2nd ‘(𝐹𝑦)) ∈ ℝ) → ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) ⊆ ℝ)
1410, 12, 13syl2anc 586 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) ⊆ ℝ)
158, 14eqsstrd 4004 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) ⊆ ℝ)
16 reex 10622 . . . . . . . 8 ℝ ∈ V
1716elpw2 5240 . . . . . . 7 (([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ ↔ ([,]‘(𝐹𝑦)) ⊆ ℝ)
1815, 17sylibr 236 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ)
1918ralrimiva 3182 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ)
20 ffn 6508 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn ℕ)
21 fveq2 6664 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ([,]‘𝑥) = ([,]‘(𝐹𝑦)))
2221eleq1d 2897 . . . . . . 7 (𝑥 = (𝐹𝑦) → (([,]‘𝑥) ∈ 𝒫 ℝ ↔ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2322ralrn 6848 . . . . . 6 (𝐹 Fn ℕ → (∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ ↔ ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2420, 23syl 17 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ ↔ ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2519, 24mpbird 259 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ)
26 iccf 12830 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
27 ffun 6511 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
2826, 27ax-mp 5 . . . . 5 Fun [,]
29 frn 6514 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
30 inss2 4205 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
31 rexpssxrxp 10680 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3230, 31sstri 3975 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
3326fdmi 6518 . . . . . . 7 dom [,] = (ℝ* × ℝ*)
3432, 33sseqtrri 4003 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ dom [,]
3529, 34sstrdi 3978 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ dom [,])
36 funimass4 6724 . . . . 5 ((Fun [,] ∧ ran 𝐹 ⊆ dom [,]) → (([,] “ ran 𝐹) ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ))
3728, 35, 36sylancr 589 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (([,] “ ran 𝐹) ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ))
3825, 37mpbird 259 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ([,] “ ran 𝐹) ⊆ 𝒫 ℝ)
391, 38eqsstrid 4014 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ 𝒫 ℝ)
40 sspwuni 5014 . 2 (ran ([,] ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ([,] ∘ 𝐹) ⊆ ℝ)
4139, 40sylib 220 1 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  cin 3934  wss 3935  𝒫 cpw 4538  cop 4566   cuni 4831   × cxp 5547  dom cdm 5549  ran crn 5550  cima 5552  ccom 5553  Fun wfun 6343   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  cr 10530  *cxr 10668  cle 10670  cn 11632  [,]cicc 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-icc 12739
This theorem is referenced by:  ovollb2lem  24083  ovollb2  24084  uniiccdif  24173  uniiccvol  24175  uniioombllem3  24180  uniioombllem4  24181  uniioombllem5  24182  uniiccmbl  24185
  Copyright terms: Public domain W3C validator