MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfioo Structured version   Visualization version   GIF version

Theorem ovolfioo 22960
Description: Unpack the interval covering property of the outer measure definition. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolfioo ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝐹,𝑧

Proof of Theorem ovolfioo
StepHypRef Expression
1 ioof 12098 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 inss2 3795 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 rexpssxrxp 9940 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
42, 3sstri 3576 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
5 fss 5955 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
64, 5mpan2 702 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
7 fco 5957 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
81, 6, 7sylancr 693 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
9 ffn 5944 . . . . 5 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
10 fniunfv 6387 . . . . 5 (((,) ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
118, 9, 103syl 18 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
1211sseq2d 3595 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1312adantl 480 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ((,) ∘ 𝐹)))
14 dfss3 3557 . . 3 (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛))
15 ssel2 3562 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 eliun 4454 . . . . . . 7 (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 ∈ (((,) ∘ 𝐹)‘𝑛))
17 fvco3 6170 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
18 ffvelrn 6250 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
192, 18sseldi 3565 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ × ℝ))
20 1st2nd2 7073 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2119, 20syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2221fveq2d 6092 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
23 df-ov 6530 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2422, 23syl6eqr 2661 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
2517, 24eqtrd 2643 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
2625eleq2d 2672 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ 𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))))
27 ovolfcl 22959 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
28 rexr 9941 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑛)) ∈ ℝ → (1st ‘(𝐹𝑛)) ∈ ℝ*)
29 rexr 9941 . . . . . . . . . . . . . . 15 ((2nd ‘(𝐹𝑛)) ∈ ℝ → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
30 elioo1 12042 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑛)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ*) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
3128, 29, 30syl2an 492 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
32 3anass 1034 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
3331, 32syl6bb 274 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
34333adant3 1073 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3527, 34syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3626, 35bitrd 266 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3736adantll 745 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
38 rexr 9941 . . . . . . . . . . 11 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
3938ad2antrr 757 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℝ*)
4039biantrurd 527 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
4137, 40bitr4d 269 . . . . . . . 8 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4241rexbidva 3030 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∃𝑛 ∈ ℕ 𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4316, 42syl5bb 270 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4415, 43sylan 486 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4544an32s 841 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑧𝐴) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4645ralbidva 2967 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4714, 46syl5bb 270 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4813, 47bitr3d 268 1 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  wrex 2896  cin 3538  wss 3539  𝒫 cpw 4107  cop 4130   cuni 4366   ciun 4449   class class class wbr 4577   × cxp 5026  ran crn 5029  ccom 5032   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  1st c1st 7034  2nd c2nd 7035  cr 9791  *cxr 9929   < clt 9930  cle 9931  cn 10867  (,)cioo 12002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-pre-lttri 9866  ax-pre-lttrn 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-ioo 12006
This theorem is referenced by:  ovollb2lem  22980  ovolunlem1  22989  ovoliunlem2  22995  ovolshftlem1  23001  ovolscalem1  23005  ioombl1lem4  23053
  Copyright terms: Public domain W3C validator