MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolgelb Structured version   Visualization version   GIF version

Theorem ovolgelb 23294
Description: The outer volume is the greatest lower bound on the sum of all interval coverings of 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
ovolgelb.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑔))
Assertion
Ref Expression
ovolgelb ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔
Allowed substitution hint:   𝑆(𝑔)

Proof of Theorem ovolgelb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1082 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) ∈ ℝ)
2 simp3 1083 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
31, 2ltaddrpd 11943 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) < ((vol*‘𝐴) + 𝐵))
42rpred 11910 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
51, 4readdcld 10107 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) + 𝐵) ∈ ℝ)
61, 5ltnled 10222 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) < ((vol*‘𝐴) + 𝐵) ↔ ¬ ((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴)))
73, 6mpbid 222 . . . 4 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ¬ ((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴))
8 eqid 2651 . . . . . . . 8 {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}
98ovolval 23288 . . . . . . 7 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ))
1093ad2ant1 1102 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ))
1110breq2d 4697 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴) ↔ ((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < )))
12 ssrab2 3720 . . . . . . 7 {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ ℝ*
135rexrd 10127 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) + 𝐵) ∈ ℝ*)
14 infxrgelb 12203 . . . . . . 7 (({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
1512, 13, 14sylancr 696 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
16 eqeq1 2655 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ↔ 𝑥 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )))
17 ovolgelb.1 . . . . . . . . . . . . . 14 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑔))
1817rneqi 5384 . . . . . . . . . . . . 13 ran 𝑆 = ran seq1( + , ((abs ∘ − ) ∘ 𝑔))
1918supeq1i 8394 . . . . . . . . . . . 12 sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )
2019eqeq2i 2663 . . . . . . . . . . 11 (𝑥 = sup(ran 𝑆, ℝ*, < ) ↔ 𝑥 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))
2116, 20syl6bbr 278 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ↔ 𝑥 = sup(ran 𝑆, ℝ*, < )))
2221anbi2d 740 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < ))))
2322rexbidv 3081 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < ))))
2423ralrab 3401 . . . . . . 7 (∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
25 ralcom 3127 . . . . . . . 8 (∀𝑥 ∈ ℝ*𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
26 r19.23v 3052 . . . . . . . . 9 (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
2726ralbii 3009 . . . . . . . 8 (∀𝑥 ∈ ℝ*𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
28 ancomst 467 . . . . . . . . . . . 12 (((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ((𝑥 = sup(ran 𝑆, ℝ*, < ) ∧ 𝐴 ran ((,) ∘ 𝑔)) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
29 impexp 461 . . . . . . . . . . . 12 (((𝑥 = sup(ran 𝑆, ℝ*, < ) ∧ 𝐴 ran ((,) ∘ 𝑔)) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
3028, 29bitri 264 . . . . . . . . . . 11 (((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
3130ralbii 3009 . . . . . . . . . 10 (∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
32 reex 10065 . . . . . . . . . . . . . . . . . 18 ℝ ∈ V
3332, 32xpex 7004 . . . . . . . . . . . . . . . . 17 (ℝ × ℝ) ∈ V
3433inex2 4833 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ∈ V
35 nnex 11064 . . . . . . . . . . . . . . . 16 ℕ ∈ V
3634, 35elmap 7928 . . . . . . . . . . . . . . 15 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
37 eqid 2651 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ∘ 𝑔) = ((abs ∘ − ) ∘ 𝑔)
3837, 17ovolsf 23287 . . . . . . . . . . . . . . 15 (𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
3936, 38sylbi 207 . . . . . . . . . . . . . 14 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 𝑆:ℕ⟶(0[,)+∞))
40 frn 6091 . . . . . . . . . . . . . 14 (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞))
4139, 40syl 17 . . . . . . . . . . . . 13 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → ran 𝑆 ⊆ (0[,)+∞))
42 icossxr 12296 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ*
4341, 42syl6ss 3648 . . . . . . . . . . . 12 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → ran 𝑆 ⊆ ℝ*)
44 supxrcl 12183 . . . . . . . . . . . 12 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
4543, 44syl 17 . . . . . . . . . . 11 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
46 breq2 4689 . . . . . . . . . . . . 13 (𝑥 = sup(ran 𝑆, ℝ*, < ) → (((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4746imbi2d 329 . . . . . . . . . . . 12 (𝑥 = sup(ran 𝑆, ℝ*, < ) → ((𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4847ceqsralv 3265 . . . . . . . . . . 11 (sup(ran 𝑆, ℝ*, < ) ∈ ℝ* → (∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4945, 48syl 17 . . . . . . . . . 10 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → (∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
5031, 49syl5bb 272 . . . . . . . . 9 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → (∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
5150ralbiia 3008 . . . . . . . 8 (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
5225, 27, 513bitr3i 290 . . . . . . 7 (∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
5324, 52bitri 264 . . . . . 6 (∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
5415, 53syl6rbb 277 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) ↔ ((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < )))
5511, 54bitr4d 271 . . . 4 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
567, 55mtbid 313 . . 3 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ¬ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
57 rexanali 3027 . . 3 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) ↔ ¬ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
5856, 57sylibr 224 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
59 xrltnle 10143 . . . . . 6 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) < ((vol*‘𝐴) + 𝐵) ↔ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
60 xrltle 12020 . . . . . 6 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) < ((vol*‘𝐴) + 𝐵) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
6159, 60sylbird 250 . . . . 5 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
6245, 13, 61syl2anr 494 . . . 4 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → (¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
6362anim2d 588 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) → (𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))))
6463reximdva 3046 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))))
6558, 64mpd 15 1 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  cin 3606  wss 3607   cuni 4468   class class class wbr 4685   × cxp 5141  ran crn 5144  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  supcsup 8387  infcinf 8388  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304  cn 11058  +crp 11870  (,)cioo 12213  [,)cico 12215  seqcseq 12841  abscabs 14018  vol*covol 23277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-ovol 23279
This theorem is referenced by:  ovolunlem2  23312  ovoliunlem3  23318  ovolscalem2  23328  ioombl1  23376  uniioombl  23403  mblfinlem3  33578  mblfinlem4  33579
  Copyright terms: Public domain W3C validator