MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolgelb Structured version   Visualization version   GIF version

Theorem ovolgelb 24008
Description: The outer volume is the greatest lower bound on the sum of all interval coverings of 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
ovolgelb.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑔))
Assertion
Ref Expression
ovolgelb ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔
Allowed substitution hint:   𝑆(𝑔)

Proof of Theorem ovolgelb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1129 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) ∈ ℝ)
2 simp3 1130 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
31, 2ltaddrpd 12452 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) < ((vol*‘𝐴) + 𝐵))
42rpred 12419 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
51, 4readdcld 10658 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) + 𝐵) ∈ ℝ)
61, 5ltnled 10775 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) < ((vol*‘𝐴) + 𝐵) ↔ ¬ ((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴)))
73, 6mpbid 233 . . . 4 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ¬ ((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴))
8 eqid 2818 . . . . . . . 8 {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}
98ovolval 24001 . . . . . . 7 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ))
1093ad2ant1 1125 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ))
1110breq2d 5069 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴) ↔ ((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < )))
12 ssrab2 4053 . . . . . . 7 {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ ℝ*
135rexrd 10679 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) + 𝐵) ∈ ℝ*)
14 infxrgelb 12716 . . . . . . 7 (({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
1512, 13, 14sylancr 587 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
16 eqeq1 2822 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ↔ 𝑥 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )))
17 ovolgelb.1 . . . . . . . . . . . . . 14 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑔))
1817rneqi 5800 . . . . . . . . . . . . 13 ran 𝑆 = ran seq1( + , ((abs ∘ − ) ∘ 𝑔))
1918supeq1i 8899 . . . . . . . . . . . 12 sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )
2019eqeq2i 2831 . . . . . . . . . . 11 (𝑥 = sup(ran 𝑆, ℝ*, < ) ↔ 𝑥 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))
2116, 20syl6bbr 290 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ↔ 𝑥 = sup(ran 𝑆, ℝ*, < )))
2221anbi2d 628 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < ))))
2322rexbidv 3294 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < ))))
2423ralrab 3682 . . . . . . 7 (∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
25 ralcom 3351 . . . . . . . 8 (∀𝑥 ∈ ℝ*𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
26 r19.23v 3276 . . . . . . . . 9 (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
2726ralbii 3162 . . . . . . . 8 (∀𝑥 ∈ ℝ*𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
28 ancomst 465 . . . . . . . . . . . 12 (((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ((𝑥 = sup(ran 𝑆, ℝ*, < ) ∧ 𝐴 ran ((,) ∘ 𝑔)) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
29 impexp 451 . . . . . . . . . . . 12 (((𝑥 = sup(ran 𝑆, ℝ*, < ) ∧ 𝐴 ran ((,) ∘ 𝑔)) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
3028, 29bitri 276 . . . . . . . . . . 11 (((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
3130ralbii 3162 . . . . . . . . . 10 (∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
32 elovolmlem 24002 . . . . . . . . . . . . . . 15 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
33 eqid 2818 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ∘ 𝑔) = ((abs ∘ − ) ∘ 𝑔)
3433, 17ovolsf 24000 . . . . . . . . . . . . . . 15 (𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
3532, 34sylbi 218 . . . . . . . . . . . . . 14 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑆:ℕ⟶(0[,)+∞))
3635frnd 6514 . . . . . . . . . . . . 13 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ran 𝑆 ⊆ (0[,)+∞))
37 icossxr 12809 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ*
3836, 37sstrdi 3976 . . . . . . . . . . . 12 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ran 𝑆 ⊆ ℝ*)
39 supxrcl 12696 . . . . . . . . . . . 12 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
4038, 39syl 17 . . . . . . . . . . 11 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
41 breq2 5061 . . . . . . . . . . . . 13 (𝑥 = sup(ran 𝑆, ℝ*, < ) → (((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4241imbi2d 342 . . . . . . . . . . . 12 (𝑥 = sup(ran 𝑆, ℝ*, < ) → ((𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4342ceqsralv 3531 . . . . . . . . . . 11 (sup(ran 𝑆, ℝ*, < ) ∈ ℝ* → (∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4440, 43syl 17 . . . . . . . . . 10 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4531, 44syl5bb 284 . . . . . . . . 9 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4645ralbiia 3161 . . . . . . . 8 (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4725, 27, 463bitr3i 302 . . . . . . 7 (∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4824, 47bitri 276 . . . . . 6 (∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4915, 48syl6rbb 289 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) ↔ ((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < )))
5011, 49bitr4d 283 . . . 4 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
517, 50mtbid 325 . . 3 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ¬ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
52 rexanali 3262 . . 3 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) ↔ ¬ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
5351, 52sylibr 235 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
54 xrltnle 10696 . . . . . 6 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) < ((vol*‘𝐴) + 𝐵) ↔ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
55 xrltle 12530 . . . . . 6 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) < ((vol*‘𝐴) + 𝐵) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
5654, 55sylbird 261 . . . . 5 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
5740, 13, 56syl2anr 596 . . . 4 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
5857anim2d 611 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) → (𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))))
5958reximdva 3271 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))))
6053, 59mpd 15 1 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  {crab 3139  cin 3932  wss 3933   cuni 4830   class class class wbr 5057   × cxp 5546  ran crn 5549  ccom 5552  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  supcsup 8892  infcinf 8893  cr 10524  0cc0 10525  1c1 10526   + caddc 10528  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  cmin 10858  cn 11626  +crp 12377  (,)cioo 12726  [,)cico 12728  seqcseq 13357  abscabs 14581  vol*covol 23990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12881  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-ovol 23992
This theorem is referenced by:  ovolunlem2  24026  ovoliunlem3  24032  ovolscalem2  24042  ioombl1  24090  uniioombl  24117  mblfinlem3  34812  mblfinlem4  34813
  Copyright terms: Public domain W3C validator