Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc1 Structured version   Visualization version   GIF version

Theorem ovolicc1 23330
 Description: The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc1.4 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
Assertion
Ref Expression
ovolicc1 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝜑,𝑛

Proof of Theorem ovolicc1
Dummy variables 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ovolicc.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 iccssre 12293 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 694 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ovolcl 23292 . . 3 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
64, 5syl 17 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
7 ovolicc.3 . . . . . . . . . . 11 (𝜑𝐴𝐵)
8 df-br 4686 . . . . . . . . . . 11 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ )
97, 8sylib 208 . . . . . . . . . 10 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ≤ )
10 opelxpi 5182 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
111, 2, 10syl2anc 694 . . . . . . . . . 10 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
129, 11elind 3831 . . . . . . . . 9 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
1312adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
14 0le0 11148 . . . . . . . . . 10 0 ≤ 0
15 df-br 4686 . . . . . . . . . 10 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
1614, 15mpbi 220 . . . . . . . . 9 ⟨0, 0⟩ ∈ ≤
17 0re 10078 . . . . . . . . . 10 0 ∈ ℝ
18 opelxpi 5182 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
1917, 17, 18mp2an 708 . . . . . . . . 9 ⟨0, 0⟩ ∈ (ℝ × ℝ)
20 elin 3829 . . . . . . . . 9 (⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨0, 0⟩ ∈ ≤ ∧ ⟨0, 0⟩ ∈ (ℝ × ℝ)))
2116, 19, 20mpbir2an 975 . . . . . . . 8 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
22 ifcl 4163 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ∧ ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
2313, 21, 22sylancl 695 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
24 ovolicc1.4 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
2523, 24fmptd 6425 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
26 eqid 2651 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
27 eqid 2651 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
2826, 27ovolsf 23287 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
2925, 28syl 17 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
30 frn 6091 . . . . 5 (seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞) → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞))
3129, 30syl 17 . . . 4 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞))
32 icossxr 12296 . . . 4 (0[,)+∞) ⊆ ℝ*
3331, 32syl6ss 3648 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ*)
34 supxrcl 12183 . . 3 (ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
3533, 34syl 17 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
362, 1resubcld 10496 . . 3 (𝜑 → (𝐵𝐴) ∈ ℝ)
3736rexrd 10127 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ*)
38 1nn 11069 . . . . . . 7 1 ∈ ℕ
3938a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 1 ∈ ℕ)
40 op1stg 7222 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
411, 2, 40syl2anc 694 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
4241adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
43 elicc2 12276 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
441, 2, 43syl2anc 694 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4544biimpa 500 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4645simp2d 1094 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
4742, 46eqbrtrd 4707 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥)
4845simp3d 1095 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
49 op2ndg 7223 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
501, 2, 49syl2anc 694 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
5150adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
5248, 51breqtrrd 4713 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))
53 fveq2 6229 . . . . . . . . . . 11 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
54 iftrue 4125 . . . . . . . . . . . . 13 (𝑛 = 1 → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = ⟨𝐴, 𝐵⟩)
55 opex 4962 . . . . . . . . . . . . 13 𝐴, 𝐵⟩ ∈ V
5654, 24, 55fvmpt 6321 . . . . . . . . . . . 12 (1 ∈ ℕ → (𝐺‘1) = ⟨𝐴, 𝐵⟩)
5738, 56ax-mp 5 . . . . . . . . . . 11 (𝐺‘1) = ⟨𝐴, 𝐵
5853, 57syl6eq 2701 . . . . . . . . . 10 (𝑛 = 1 → (𝐺𝑛) = ⟨𝐴, 𝐵⟩)
5958fveq2d 6233 . . . . . . . . 9 (𝑛 = 1 → (1st ‘(𝐺𝑛)) = (1st ‘⟨𝐴, 𝐵⟩))
6059breq1d 4695 . . . . . . . 8 (𝑛 = 1 → ((1st ‘(𝐺𝑛)) ≤ 𝑥 ↔ (1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥))
6158fveq2d 6233 . . . . . . . . 9 (𝑛 = 1 → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨𝐴, 𝐵⟩))
6261breq2d 4697 . . . . . . . 8 (𝑛 = 1 → (𝑥 ≤ (2nd ‘(𝐺𝑛)) ↔ 𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩)))
6360, 62anbi12d 747 . . . . . . 7 (𝑛 = 1 → (((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))))
6463rspcev 3340 . . . . . 6 ((1 ∈ ℕ ∧ ((1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
6539, 47, 52, 64syl12anc 1364 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
6665ralrimiva 2995 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
67 ovolficc 23283 . . . . 5 (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
684, 25, 67syl2anc 694 . . . 4 (𝜑 → ((𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
6966, 68mpbird 247 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺))
7027ovollb2 23303 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺)) → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
7125, 69, 70syl2anc 694 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
72 addid1 10254 . . . . . . . . 9 (𝑘 ∈ ℂ → (𝑘 + 0) = 𝑘)
7372adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ℂ) → (𝑘 + 0) = 𝑘)
74 nnuz 11761 . . . . . . . . . 10 ℕ = (ℤ‘1)
7538, 74eleqtri 2728 . . . . . . . . 9 1 ∈ (ℤ‘1)
7675a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → 1 ∈ (ℤ‘1))
77 simpr 476 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
7877, 74syl6eleq 2740 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ (ℤ‘1))
79 rge0ssre 12318 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
8029adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
81 ffvelrn 6397 . . . . . . . . . . 11 ((seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ (0[,)+∞))
8280, 38, 81sylancl 695 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ (0[,)+∞))
8379, 82sseldi 3634 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ ℝ)
8483recnd 10106 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ ℂ)
8525ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
86 elfzuz 12376 . . . . . . . . . . . . 13 (𝑘 ∈ ((1 + 1)...𝑥) → 𝑘 ∈ (ℤ‘(1 + 1)))
8786adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ‘(1 + 1)))
88 df-2 11117 . . . . . . . . . . . . 13 2 = (1 + 1)
8988fveq2i 6232 . . . . . . . . . . . 12 (ℤ‘2) = (ℤ‘(1 + 1))
9087, 89syl6eleqr 2741 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ‘2))
91 eluz2nn 11764 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
9290, 91syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ ℕ)
9326ovolfsval 23285 . . . . . . . . . 10 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑘 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))))
9485, 92, 93syl2anc 694 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))))
95 eqeq1 2655 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑛 = 1 ↔ 𝑘 = 1))
9695ifbid 4141 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
97 opex 4962 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ V
9855, 97ifex 4189 . . . . . . . . . . . . . . . 16 if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ V
9996, 24, 98fvmpt 6321 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝐺𝑘) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
10092, 99syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺𝑘) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
101 eluz2b3 11800 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≠ 1))
102101simprbi 479 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 𝑘 ≠ 1)
10390, 102syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ≠ 1)
104103neneqd 2828 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ¬ 𝑘 = 1)
105104iffalsed 4130 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = ⟨0, 0⟩)
106100, 105eqtrd 2685 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺𝑘) = ⟨0, 0⟩)
107106fveq2d 6233 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺𝑘)) = (2nd ‘⟨0, 0⟩))
108 c0ex 10072 . . . . . . . . . . . . 13 0 ∈ V
109108, 108op2nd 7219 . . . . . . . . . . . 12 (2nd ‘⟨0, 0⟩) = 0
110107, 109syl6eq 2701 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺𝑘)) = 0)
111106fveq2d 6233 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺𝑘)) = (1st ‘⟨0, 0⟩))
112108, 108op1st 7218 . . . . . . . . . . . 12 (1st ‘⟨0, 0⟩) = 0
113111, 112syl6eq 2701 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺𝑘)) = 0)
114110, 113oveq12d 6708 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))) = (0 − 0))
115 0m0e0 11168 . . . . . . . . . 10 (0 − 0) = 0
116114, 115syl6eq 2701 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))) = 0)
11794, 116eqtrd 2685 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = 0)
11873, 76, 78, 84, 117seqid2 12887 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥))
119 1z 11445 . . . . . . . 8 1 ∈ ℤ
12025adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
12126ovolfsval 23285 . . . . . . . . . 10 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))))
122120, 38, 121sylancl 695 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))))
12357fveq2i 6232 . . . . . . . . . . 11 (2nd ‘(𝐺‘1)) = (2nd ‘⟨𝐴, 𝐵⟩)
12450adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
125123, 124syl5eq 2697 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (2nd ‘(𝐺‘1)) = 𝐵)
12657fveq2i 6232 . . . . . . . . . . 11 (1st ‘(𝐺‘1)) = (1st ‘⟨𝐴, 𝐵⟩)
12741adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
128126, 127syl5eq 2697 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (1st ‘(𝐺‘1)) = 𝐴)
129125, 128oveq12d 6708 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))) = (𝐵𝐴))
130122, 129eqtrd 2685 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = (𝐵𝐴))
131119, 130seq1i 12855 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) = (𝐵𝐴))
132118, 131eqtr3d 2687 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) = (𝐵𝐴))
13336leidd 10632 . . . . . . 7 (𝜑 → (𝐵𝐴) ≤ (𝐵𝐴))
134133adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (𝐵𝐴) ≤ (𝐵𝐴))
135132, 134eqbrtrd 4707 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴))
136135ralrimiva 2995 . . . 4 (𝜑 → ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴))
137 ffn 6083 . . . . . 6 (seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞) → seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ)
13829, 137syl 17 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ)
139 breq1 4688 . . . . . 6 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) → (𝑧 ≤ (𝐵𝐴) ↔ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
140139ralrn 6402 . . . . 5 (seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
141138, 140syl 17 . . . 4 (𝜑 → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
142136, 141mpbird 247 . . 3 (𝜑 → ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴))
143 supxrleub 12194 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴)))
14433, 37, 143syl2anc 694 . . 3 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴)))
145142, 144mpbird 247 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴))
1466, 35, 37, 71, 145xrletrd 12031 1 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942   ∩ cin 3606   ⊆ wss 3607  ifcif 4119  ⟨cop 4216  ∪ cuni 4468   class class class wbr 4685   ↦ cmpt 4762   × cxp 5141  ran crn 5144   ∘ ccom 5147   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  supcsup 8387  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304  ℕcn 11058  2c2 11108  ℤ≥cuz 11725  [,)cico 12215  [,]cicc 12216  ...cfz 12364  seqcseq 12841  abscabs 14018  vol*covol 23277 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-ovol 23279 This theorem is referenced by:  ovolicc  23337
 Copyright terms: Public domain W3C validator