MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc1 Structured version   Visualization version   GIF version

Theorem ovolicc1 24119
Description: The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc1.4 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
Assertion
Ref Expression
ovolicc1 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝜑,𝑛

Proof of Theorem ovolicc1
Dummy variables 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ovolicc.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 iccssre 12821 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 586 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ovolcl 24081 . . 3 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
64, 5syl 17 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
7 ovolicc.3 . . . . . . . . . . 11 (𝜑𝐴𝐵)
8 df-br 5069 . . . . . . . . . . 11 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ )
97, 8sylib 220 . . . . . . . . . 10 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ≤ )
101, 2opelxpd 5595 . . . . . . . . . 10 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
119, 10elind 4173 . . . . . . . . 9 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
1211adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
13 0le0 11741 . . . . . . . . . 10 0 ≤ 0
14 df-br 5069 . . . . . . . . . 10 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
1513, 14mpbi 232 . . . . . . . . 9 ⟨0, 0⟩ ∈ ≤
16 0re 10645 . . . . . . . . . 10 0 ∈ ℝ
17 opelxpi 5594 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
1816, 16, 17mp2an 690 . . . . . . . . 9 ⟨0, 0⟩ ∈ (ℝ × ℝ)
1915, 18elini 4172 . . . . . . . 8 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
20 ifcl 4513 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ∧ ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
2112, 19, 20sylancl 588 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
22 ovolicc1.4 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
2321, 22fmptd 6880 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 eqid 2823 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
25 eqid 2823 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
2624, 25ovolsf 24075 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
2723, 26syl 17 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
2827frnd 6523 . . . 4 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞))
29 icossxr 12824 . . . 4 (0[,)+∞) ⊆ ℝ*
3028, 29sstrdi 3981 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ*)
31 supxrcl 12711 . . 3 (ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
3230, 31syl 17 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
332, 1resubcld 11070 . . 3 (𝜑 → (𝐵𝐴) ∈ ℝ)
3433rexrd 10693 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ*)
35 1nn 11651 . . . . . . 7 1 ∈ ℕ
3635a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 1 ∈ ℕ)
37 op1stg 7703 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
381, 2, 37syl2anc 586 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
3938adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
40 elicc2 12804 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
411, 2, 40syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4241biimpa 479 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4342simp2d 1139 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
4439, 43eqbrtrd 5090 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥)
4542simp3d 1140 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
46 op2ndg 7704 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
471, 2, 46syl2anc 586 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4847adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4945, 48breqtrrd 5096 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))
50 fveq2 6672 . . . . . . . . . . 11 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
51 iftrue 4475 . . . . . . . . . . . . 13 (𝑛 = 1 → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = ⟨𝐴, 𝐵⟩)
52 opex 5358 . . . . . . . . . . . . 13 𝐴, 𝐵⟩ ∈ V
5351, 22, 52fvmpt 6770 . . . . . . . . . . . 12 (1 ∈ ℕ → (𝐺‘1) = ⟨𝐴, 𝐵⟩)
5435, 53ax-mp 5 . . . . . . . . . . 11 (𝐺‘1) = ⟨𝐴, 𝐵
5550, 54syl6eq 2874 . . . . . . . . . 10 (𝑛 = 1 → (𝐺𝑛) = ⟨𝐴, 𝐵⟩)
5655fveq2d 6676 . . . . . . . . 9 (𝑛 = 1 → (1st ‘(𝐺𝑛)) = (1st ‘⟨𝐴, 𝐵⟩))
5756breq1d 5078 . . . . . . . 8 (𝑛 = 1 → ((1st ‘(𝐺𝑛)) ≤ 𝑥 ↔ (1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥))
5855fveq2d 6676 . . . . . . . . 9 (𝑛 = 1 → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨𝐴, 𝐵⟩))
5958breq2d 5080 . . . . . . . 8 (𝑛 = 1 → (𝑥 ≤ (2nd ‘(𝐺𝑛)) ↔ 𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩)))
6057, 59anbi12d 632 . . . . . . 7 (𝑛 = 1 → (((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))))
6160rspcev 3625 . . . . . 6 ((1 ∈ ℕ ∧ ((1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
6236, 44, 49, 61syl12anc 834 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
6362ralrimiva 3184 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
64 ovolficc 24071 . . . . 5 (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
654, 23, 64syl2anc 586 . . . 4 (𝜑 → ((𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
6663, 65mpbird 259 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺))
6725ovollb2 24092 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺)) → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
6823, 66, 67syl2anc 586 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
69 addid1 10822 . . . . . . . . 9 (𝑘 ∈ ℂ → (𝑘 + 0) = 𝑘)
7069adantl 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ℂ) → (𝑘 + 0) = 𝑘)
71 nnuz 12284 . . . . . . . . . 10 ℕ = (ℤ‘1)
7235, 71eleqtri 2913 . . . . . . . . 9 1 ∈ (ℤ‘1)
7372a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → 1 ∈ (ℤ‘1))
74 simpr 487 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
7574, 71eleqtrdi 2925 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ (ℤ‘1))
76 rge0ssre 12847 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
7727adantr 483 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
78 ffvelrn 6851 . . . . . . . . . . 11 ((seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ (0[,)+∞))
7977, 35, 78sylancl 588 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ (0[,)+∞))
8076, 79sseldi 3967 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ ℝ)
8180recnd 10671 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ ℂ)
8223ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
83 elfzuz 12907 . . . . . . . . . . . . 13 (𝑘 ∈ ((1 + 1)...𝑥) → 𝑘 ∈ (ℤ‘(1 + 1)))
8483adantl 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ‘(1 + 1)))
85 df-2 11703 . . . . . . . . . . . . 13 2 = (1 + 1)
8685fveq2i 6675 . . . . . . . . . . . 12 (ℤ‘2) = (ℤ‘(1 + 1))
8784, 86eleqtrrdi 2926 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ‘2))
88 eluz2nn 12287 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
8987, 88syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ ℕ)
9024ovolfsval 24073 . . . . . . . . . 10 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑘 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))))
9182, 89, 90syl2anc 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))))
92 eqeq1 2827 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑛 = 1 ↔ 𝑘 = 1))
9392ifbid 4491 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
94 opex 5358 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ V
9552, 94ifex 4517 . . . . . . . . . . . . . . . 16 if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ V
9693, 22, 95fvmpt 6770 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝐺𝑘) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
9789, 96syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺𝑘) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
98 eluz2b3 12325 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≠ 1))
9998simprbi 499 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 𝑘 ≠ 1)
10087, 99syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ≠ 1)
101100neneqd 3023 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ¬ 𝑘 = 1)
102101iffalsed 4480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = ⟨0, 0⟩)
10397, 102eqtrd 2858 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺𝑘) = ⟨0, 0⟩)
104103fveq2d 6676 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺𝑘)) = (2nd ‘⟨0, 0⟩))
105 c0ex 10637 . . . . . . . . . . . . 13 0 ∈ V
106105, 105op2nd 7700 . . . . . . . . . . . 12 (2nd ‘⟨0, 0⟩) = 0
107104, 106syl6eq 2874 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺𝑘)) = 0)
108103fveq2d 6676 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺𝑘)) = (1st ‘⟨0, 0⟩))
109105, 105op1st 7699 . . . . . . . . . . . 12 (1st ‘⟨0, 0⟩) = 0
110108, 109syl6eq 2874 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺𝑘)) = 0)
111107, 110oveq12d 7176 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))) = (0 − 0))
112 0m0e0 11760 . . . . . . . . . 10 (0 − 0) = 0
113111, 112syl6eq 2874 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))) = 0)
11491, 113eqtrd 2858 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = 0)
11570, 73, 75, 81, 114seqid2 13419 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥))
116 1z 12015 . . . . . . . 8 1 ∈ ℤ
11723adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
11824ovolfsval 24073 . . . . . . . . . 10 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))))
119117, 35, 118sylancl 588 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))))
12054fveq2i 6675 . . . . . . . . . . 11 (2nd ‘(𝐺‘1)) = (2nd ‘⟨𝐴, 𝐵⟩)
12147adantr 483 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
122120, 121syl5eq 2870 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (2nd ‘(𝐺‘1)) = 𝐵)
12354fveq2i 6675 . . . . . . . . . . 11 (1st ‘(𝐺‘1)) = (1st ‘⟨𝐴, 𝐵⟩)
12438adantr 483 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
125123, 124syl5eq 2870 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (1st ‘(𝐺‘1)) = 𝐴)
126122, 125oveq12d 7176 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))) = (𝐵𝐴))
127119, 126eqtrd 2858 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = (𝐵𝐴))
128116, 127seq1i 13386 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) = (𝐵𝐴))
129115, 128eqtr3d 2860 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) = (𝐵𝐴))
13033leidd 11208 . . . . . . 7 (𝜑 → (𝐵𝐴) ≤ (𝐵𝐴))
131130adantr 483 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (𝐵𝐴) ≤ (𝐵𝐴))
132129, 131eqbrtrd 5090 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴))
133132ralrimiva 3184 . . . 4 (𝜑 → ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴))
13427ffnd 6517 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ)
135 breq1 5071 . . . . . 6 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) → (𝑧 ≤ (𝐵𝐴) ↔ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
136135ralrn 6856 . . . . 5 (seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
137134, 136syl 17 . . . 4 (𝜑 → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
138133, 137mpbird 259 . . 3 (𝜑 → ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴))
139 supxrleub 12722 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴)))
14030, 34, 139syl2anc 586 . . 3 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴)))
141138, 140mpbird 259 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴))
1426, 32, 34, 68, 141xrletrd 12558 1 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  cin 3937  wss 3938  ifcif 4469  cop 4575   cuni 4840   class class class wbr 5068  cmpt 5148   × cxp 5555  ran crn 5558  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  supcsup 8906  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  cmin 10872  cn 11640  2c2 11695  cuz 12246  [,)cico 12743  [,]cicc 12744  ...cfz 12895  seqcseq 13372  abscabs 14595  vol*covol 24065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-ovol 24067
This theorem is referenced by:  ovolicc  24126
  Copyright terms: Public domain W3C validator