Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem2 Structured version   Visualization version   GIF version

Theorem ovolicc2lem2 23332
 Description: Lemma for ovolicc2 23336. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
ovolicc2.10 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
ovolicc2.11 (𝜑𝐻:𝑇𝑇)
ovolicc2.12 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐻𝑡))
ovolicc2.13 (𝜑𝐴𝐶)
ovolicc2.14 (𝜑𝐶𝑇)
ovolicc2.15 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶}))
ovolicc2.16 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾𝑛)}
Assertion
Ref Expression
ovolicc2lem2 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵)
Distinct variable groups:   𝑡,𝑛,𝑢,𝐴   𝐵,𝑛,𝑡,𝑢   𝑡,𝐻   𝐶,𝑛,𝑡   𝑛,𝐹,𝑡   𝑛,𝐾,𝑡,𝑢   𝑛,𝐺,𝑡   𝑛,𝑊   𝜑,𝑛,𝑡   𝑇,𝑛,𝑡   𝑛,𝑁,𝑡,𝑢   𝑈,𝑛,𝑡,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐶(𝑢)   𝑆(𝑢,𝑡,𝑛)   𝑇(𝑢)   𝐹(𝑢)   𝐺(𝑢)   𝐻(𝑢,𝑛)   𝑊(𝑢,𝑡)

Proof of Theorem ovolicc2lem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovolicc.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21adantr 480 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 𝐵 ∈ ℝ)
3 ovolicc2.5 . . . . . . . . 9 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss2 3867 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 fss 6094 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ × ℝ))
63, 4, 5sylancl 695 . . . . . . . 8 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
76adantr 480 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
8 ovolicc2.8 . . . . . . . . 9 (𝜑𝐺:𝑈⟶ℕ)
98adantr 480 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 𝐺:𝑈⟶ℕ)
10 nnuz 11761 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
11 ovolicc2.15 . . . . . . . . . . . 12 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶}))
12 1zzd 11446 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
13 ovolicc2.14 . . . . . . . . . . . 12 (𝜑𝐶𝑇)
14 ovolicc2.11 . . . . . . . . . . . 12 (𝜑𝐻:𝑇𝑇)
1510, 11, 12, 13, 14algrf 15333 . . . . . . . . . . 11 (𝜑𝐾:ℕ⟶𝑇)
1615ffvelrnda 6399 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (𝐾𝑁) ∈ 𝑇)
17 ineq1 3840 . . . . . . . . . . . 12 (𝑢 = (𝐾𝑁) → (𝑢 ∩ (𝐴[,]𝐵)) = ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
1817neeq1d 2882 . . . . . . . . . . 11 (𝑢 = (𝐾𝑁) → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
19 ovolicc2.10 . . . . . . . . . . 11 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
2018, 19elrab2 3399 . . . . . . . . . 10 ((𝐾𝑁) ∈ 𝑇 ↔ ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
2116, 20sylib 208 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
2221simpld 474 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐾𝑁) ∈ 𝑈)
239, 22ffvelrnd 6400 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐺‘(𝐾𝑁)) ∈ ℕ)
247, 23ffvelrnd 6400 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ))
25 xp2nd 7243 . . . . . 6 ((𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
2624, 25syl 17 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
272, 26ltnled 10222 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ↔ ¬ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵))
28 simprl 809 . . . . . 6 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝑁 ∈ ℕ)
291adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 ∈ ℝ)
3021adantrr 753 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
3130simprd 478 . . . . . . . . 9 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅)
32 n0 3964 . . . . . . . . 9 (((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
3331, 32sylib 208 . . . . . . . 8 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ∃𝑥 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
34 xp1st 7242 . . . . . . . . . . . 12 ((𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3524, 34syl 17 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3635adantrr 753 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3736adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
38 simpr 476 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
39 elin 3829 . . . . . . . . . . . . 13 (𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ↔ (𝑥 ∈ (𝐾𝑁) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
4038, 39sylib 208 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐾𝑁) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
4140simprd 478 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵))
42 ovolicc.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
43 elicc2 12276 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4442, 1, 43syl2anc 694 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4544ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4641, 45mpbid 222 . . . . . . . . . 10 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4746simp1d 1093 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ)
481ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ)
4940simpld 474 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐾𝑁))
5030simpld 474 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝐾𝑁) ∈ 𝑈)
51 ovolicc.3 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
52 ovolicc2.4 . . . . . . . . . . . . . 14 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
53 ovolicc2.6 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
54 ovolicc2.7 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
55 ovolicc2.9 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
5642, 1, 51, 52, 3, 53, 54, 8, 55ovolicc2lem1 23331 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐾𝑁) ∈ 𝑈) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5750, 56syldan 486 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5857adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5949, 58mpbid 222 . . . . . . . . . 10 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁))))))
6059simp2d 1094 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥)
6146simp3d 1095 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥𝐵)
6237, 47, 48, 60, 61ltletrd 10235 . . . . . . . 8 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵)
6333, 62exlimddv 1903 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵)
64 simprr 811 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))
6542, 1, 51, 52, 3, 53, 54, 8, 55ovolicc2lem1 23331 . . . . . . . 8 ((𝜑 ∧ (𝐾𝑁) ∈ 𝑈) → (𝐵 ∈ (𝐾𝑁) ↔ (𝐵 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
6650, 65syldan 486 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝐵 ∈ (𝐾𝑁) ↔ (𝐵 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
6729, 63, 64, 66mpbir3and 1264 . . . . . 6 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 ∈ (𝐾𝑁))
68 fveq2 6229 . . . . . . . 8 (𝑛 = 𝑁 → (𝐾𝑛) = (𝐾𝑁))
6968eleq2d 2716 . . . . . . 7 (𝑛 = 𝑁 → (𝐵 ∈ (𝐾𝑛) ↔ 𝐵 ∈ (𝐾𝑁)))
70 ovolicc2.16 . . . . . . 7 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾𝑛)}
7169, 70elrab2 3399 . . . . . 6 (𝑁𝑊 ↔ (𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝐾𝑁)))
7228, 67, 71sylanbrc 699 . . . . 5 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝑁𝑊)
7372expr 642 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) → 𝑁𝑊))
7427, 73sylbird 250 . . 3 ((𝜑𝑁 ∈ ℕ) → (¬ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵𝑁𝑊))
7574con1d 139 . 2 ((𝜑𝑁 ∈ ℕ) → (¬ 𝑁𝑊 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵))
7675impr 648 1 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ∃wex 1744   ∈ wcel 2030   ≠ wne 2823  {crab 2945   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  ifcif 4119  𝒫 cpw 4191  {csn 4210  ∪ cuni 4468   class class class wbr 4685   × cxp 5141  ran crn 5144   ∘ ccom 5147  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  Fincfn 7997  ℝcr 9973  1c1 9975   + caddc 9977   < clt 10112   ≤ cle 10113   − cmin 10304  ℕcn 11058  (,)cioo 12213  [,]cicc 12216  seqcseq 12841  abscabs 14018 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-ioo 12217  df-icc 12220  df-fz 12365  df-seq 12842 This theorem is referenced by:  ovolicc2lem3  23333  ovolicc2lem4  23334
 Copyright terms: Public domain W3C validator