MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem5 Structured version   Visualization version   GIF version

Theorem ovolicc2lem5 24121
Description: Lemma for ovolicc2 24122. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
ovolicc2.10 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
Assertion
Ref Expression
ovolicc2lem5 (𝜑 → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑢,𝑡,𝐴   𝑡,𝐵,𝑢   𝑡,𝐹   𝑡,𝐺   𝜑,𝑡   𝑡,𝑇   𝑡,𝑈,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝑆(𝑢,𝑡)   𝑇(𝑢)   𝐹(𝑢)   𝐺(𝑢)

Proof of Theorem ovolicc2lem5
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc2.7 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
2 ovolicc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
32rexrd 10690 . . . . 5 (𝜑𝐴 ∈ ℝ*)
4 ovolicc.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
54rexrd 10690 . . . . 5 (𝜑𝐵 ∈ ℝ*)
6 ovolicc.3 . . . . 5 (𝜑𝐴𝐵)
7 lbicc2 12851 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
83, 5, 6, 7syl3anc 1367 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
91, 8sseldd 3967 . . 3 (𝜑𝐴 𝑈)
10 eluni2 4841 . . 3 (𝐴 𝑈 ↔ ∃𝑧𝑈 𝐴𝑧)
119, 10sylib 220 . 2 (𝜑 → ∃𝑧𝑈 𝐴𝑧)
12 ovolicc2.6 . . . . . . 7 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
1312elin2d 4175 . . . . . 6 (𝜑𝑈 ∈ Fin)
14 ovolicc2.10 . . . . . . 7 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
1514ssrab3 4056 . . . . . 6 𝑇𝑈
16 ssfi 8737 . . . . . 6 ((𝑈 ∈ Fin ∧ 𝑇𝑈) → 𝑇 ∈ Fin)
1713, 15, 16sylancl 588 . . . . 5 (𝜑𝑇 ∈ Fin)
181adantr 483 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐴[,]𝐵) ⊆ 𝑈)
19 ovolicc2.8 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝑈⟶ℕ)
20 ineq1 4180 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑡 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑡 ∩ (𝐴[,]𝐵)))
2120neeq1d 3075 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑡 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅))
2221, 14elrab2 3682 . . . . . . . . . . . . . . . 16 (𝑡𝑇 ↔ (𝑡𝑈 ∧ (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅))
2322simplbi 500 . . . . . . . . . . . . . . 15 (𝑡𝑇𝑡𝑈)
24 ffvelrn 6848 . . . . . . . . . . . . . . 15 ((𝐺:𝑈⟶ℕ ∧ 𝑡𝑈) → (𝐺𝑡) ∈ ℕ)
2519, 23, 24syl2an 597 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℕ)
26 ovolicc2.5 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2726ffvelrnda 6850 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺𝑡) ∈ ℕ) → (𝐹‘(𝐺𝑡)) ∈ ( ≤ ∩ (ℝ × ℝ)))
2825, 27syldan 593 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝐹‘(𝐺𝑡)) ∈ ( ≤ ∩ (ℝ × ℝ)))
2928elin2d 4175 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ))
30 xp2nd 7721 . . . . . . . . . . . 12 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
3129, 30syl 17 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
324adantr 483 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐵 ∈ ℝ)
3331, 32ifcld 4511 . . . . . . . . . 10 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ)
3422simprbi 499 . . . . . . . . . . . . . 14 (𝑡𝑇 → (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅)
3534adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅)
36 n0 4309 . . . . . . . . . . . . 13 ((𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
3735, 36sylib 220 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → ∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
382adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ∈ ℝ)
39 simprr 771 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
4039elin2d 4175 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝐴[,]𝐵))
414adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐵 ∈ ℝ)
42 elicc2 12800 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
432, 41, 42syl2an2r 683 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4440, 43mpbid 234 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4544simp1d 1138 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ ℝ)
4629adantrr 715 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ))
4746, 30syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
4844simp2d 1139 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴𝑦)
4939elin1d 4174 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦𝑡)
5025adantrr 715 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐺𝑡) ∈ ℕ)
51 fvco3 6759 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐺𝑡) ∈ ℕ) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = ((,)‘(𝐹‘(𝐺𝑡))))
5226, 50, 51syl2an2r 683 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = ((,)‘(𝐹‘(𝐺𝑡))))
53 ovolicc2.9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
5423, 53sylan2 594 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡𝑇) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
5554adantrr 715 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
56 1st2nd2 7727 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (𝐹‘(𝐺𝑡)) = ⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
5746, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐹‘(𝐺𝑡)) = ⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
5857fveq2d 6673 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → ((,)‘(𝐹‘(𝐺𝑡))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩))
59 df-ov 7158 . . . . . . . . . . . . . . . . . . . . 21 ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
6058, 59syl6eqr 2874 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → ((,)‘(𝐹‘(𝐺𝑡))) = ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
6152, 55, 603eqtr3d 2864 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑡 = ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
6249, 61eleqtrd 2915 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
63 xp1st 7720 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
6446, 63syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
65 rexr 10686 . . . . . . . . . . . . . . . . . . . 20 ((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*)
66 rexr 10686 . . . . . . . . . . . . . . . . . . . 20 ((2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*)
67 elioo2 12778 . . . . . . . . . . . . . . . . . . . 20 (((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ* ∧ (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
6865, 66, 67syl2an 597 . . . . . . . . . . . . . . . . . . 19 (((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ ∧ (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
6964, 47, 68syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
7062, 69mpbid 234 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡)))))
7170simp3d 1140 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))
7245, 47, 71ltled 10787 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
7338, 45, 47, 48, 72letrd 10796 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
7473expr 459 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡)))))
7574exlimdv 1930 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡)))))
7637, 75mpd 15 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
776adantr 483 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐴𝐵)
78 breq2 5069 . . . . . . . . . . . 12 ((2nd ‘(𝐹‘(𝐺𝑡))) = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) → (𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))) ↔ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵)))
79 breq2 5069 . . . . . . . . . . . 12 (𝐵 = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) → (𝐴𝐵𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵)))
8078, 79ifboth 4504 . . . . . . . . . . 11 ((𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))) ∧ 𝐴𝐵) → 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
8176, 77, 80syl2anc 586 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
82 min2 12582 . . . . . . . . . . 11 (((2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)
8331, 32, 82syl2anc 586 . . . . . . . . . 10 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)
84 elicc2 12800 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
852, 4, 84syl2anc 586 . . . . . . . . . . 11 (𝜑 → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
8685adantr 483 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
8733, 81, 83, 86mpbir3and 1338 . . . . . . . . 9 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵))
8818, 87sseldd 3967 . . . . . . . 8 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑈)
89 eluni2 4841 . . . . . . . 8 (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑈 ↔ ∃𝑥𝑈 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
9088, 89sylib 220 . . . . . . 7 ((𝜑𝑡𝑇) → ∃𝑥𝑈 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
91 simprl 769 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → 𝑥𝑈)
92 simprr 771 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
9387adantr 483 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵))
94 inelcm 4413 . . . . . . . . 9 ((if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵)) → (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅)
9592, 93, 94syl2anc 586 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅)
96 ineq1 4180 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑥 ∩ (𝐴[,]𝐵)))
9796neeq1d 3075 . . . . . . . . 9 (𝑢 = 𝑥 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅))
9897, 14elrab2 3682 . . . . . . . 8 (𝑥𝑇 ↔ (𝑥𝑈 ∧ (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅))
9991, 95, 98sylanbrc 585 . . . . . . 7 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → 𝑥𝑇)
10090, 99, 92reximssdv 3276 . . . . . 6 ((𝜑𝑡𝑇) → ∃𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
101100ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑡𝑇𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
102 eleq2 2901 . . . . . 6 (𝑥 = (𝑡) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥 ↔ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
103102ac6sfi 8761 . . . . 5 ((𝑇 ∈ Fin ∧ ∀𝑡𝑇𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥) → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
10417, 101, 103syl2anc 586 . . . 4 (𝜑 → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
105104adantr 483 . . 3 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
106 2fveq3 6674 . . . . . . . . . . 11 (𝑥 = 𝑡 → (𝐹‘(𝐺𝑥)) = (𝐹‘(𝐺𝑡)))
107106fveq2d 6673 . . . . . . . . . 10 (𝑥 = 𝑡 → (2nd ‘(𝐹‘(𝐺𝑥))) = (2nd ‘(𝐹‘(𝐺𝑡))))
108107breq1d 5075 . . . . . . . . 9 (𝑥 = 𝑡 → ((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵 ↔ (2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵))
109108, 107ifbieq1d 4489 . . . . . . . 8 (𝑥 = 𝑡 → if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
110 fveq2 6669 . . . . . . . 8 (𝑥 = 𝑡 → (𝑥) = (𝑡))
111109, 110eleq12d 2907 . . . . . . 7 (𝑥 = 𝑡 → (if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ↔ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
112111cbvralvw 3449 . . . . . 6 (∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ↔ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
1132adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴 ∈ ℝ)
1144adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐵 ∈ ℝ)
1156adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴𝐵)
116 ovolicc2.4 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
11726adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
11812adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
1191adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝐴[,]𝐵) ⊆ 𝑈)
12019adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐺:𝑈⟶ℕ)
12153adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) ∧ 𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
122 simprrl 779 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → :𝑇𝑇)
123 simprrr 780 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥))
124111rspccva 3621 . . . . . . . . . 10 ((∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ∧ 𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
125123, 124sylan 582 . . . . . . . . 9 (((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) ∧ 𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
126 simprlr 778 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴𝑧)
127 simprll 777 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑧𝑈)
1288adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴 ∈ (𝐴[,]𝐵))
129 inelcm 4413 . . . . . . . . . . 11 ((𝐴𝑧𝐴 ∈ (𝐴[,]𝐵)) → (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅)
130126, 128, 129syl2anc 586 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅)
131 ineq1 4180 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑧 ∩ (𝐴[,]𝐵)))
132131neeq1d 3075 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅))
133132, 14elrab2 3682 . . . . . . . . . 10 (𝑧𝑇 ↔ (𝑧𝑈 ∧ (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅))
134127, 130, 133sylanbrc 585 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑧𝑇)
135 eqid 2821 . . . . . . . . 9 seq1(( ∘ 1st ), (ℕ × {𝑧})) = seq1(( ∘ 1st ), (ℕ × {𝑧}))
136 fveq2 6669 . . . . . . . . . . 11 (𝑚 = 𝑛 → (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚) = (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛))
137136eleq2d 2898 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚) ↔ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛)))
138137cbvrabv 3491 . . . . . . . . 9 {𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)} = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛)}
139 eqid 2821 . . . . . . . . 9 inf({𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)}, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)}, ℝ, < )
140113, 114, 115, 116, 117, 118, 119, 120, 121, 14, 122, 125, 126, 134, 135, 138, 139ovolicc2lem4 24120 . . . . . . . 8 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
141140anassrs 470 . . . . . . 7 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥))) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
142141expr 459 . . . . . 6 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ :𝑇𝑇) → (∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
143112, 142syl5bir 245 . . . . 5 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ :𝑇𝑇) → (∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
144143expimpd 456 . . . 4 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → ((:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
145144exlimdv 1930 . . 3 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → (∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
146105, 145mpd 15 . 2 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
14711, 146rexlimddv 3291 1 (𝜑 → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  cin 3934  wss 3935  c0 4290  ifcif 4466  𝒫 cpw 4538  {csn 4566  cop 4572   cuni 4837   class class class wbr 5065   × cxp 5552  ran crn 5555  ccom 5558  wf 6350  cfv 6354  (class class class)co 7155  1st c1st 7686  2nd c2nd 7687  Fincfn 8508  supcsup 8903  infcinf 8904  cr 10535  1c1 10537   + caddc 10539  *cxr 10673   < clt 10674  cle 10675  cmin 10869  cn 11637  (,)cioo 12737  [,]cicc 12740  seqcseq 13368  abscabs 14592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042
This theorem is referenced by:  ovolicc2  24122
  Copyright terms: Public domain W3C validator