MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun Structured version   Visualization version   GIF version

Theorem ovoliun 24108
Description: The Lebesgue outer measure function is countably sub-additive. (Many books allow +∞ as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss 24088, so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
Assertion
Ref Expression
ovoliun (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
Distinct variable group:   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovoliun
Dummy variables 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10700 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 (𝜑 → -∞ ∈ ℝ*)
3 nnuz 12284 . . . . . . . . 9 ℕ = (ℤ‘1)
4 1zzd 12016 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
5 ovoliun.v . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
6 ovoliun.g . . . . . . . . . . 11 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
75, 6fmptd 6880 . . . . . . . . . 10 (𝜑𝐺:ℕ⟶ℝ)
87ffvelrnda 6853 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
93, 4, 8serfre 13402 . . . . . . . 8 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
10 ovoliun.t . . . . . . . . 9 𝑇 = seq1( + , 𝐺)
1110feq1i 6507 . . . . . . . 8 (𝑇:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
129, 11sylibr 236 . . . . . . 7 (𝜑𝑇:ℕ⟶ℝ)
13 1nn 11651 . . . . . . 7 1 ∈ ℕ
14 ffvelrn 6851 . . . . . . 7 ((𝑇:ℕ⟶ℝ ∧ 1 ∈ ℕ) → (𝑇‘1) ∈ ℝ)
1512, 13, 14sylancl 588 . . . . . 6 (𝜑 → (𝑇‘1) ∈ ℝ)
1615rexrd 10693 . . . . 5 (𝜑 → (𝑇‘1) ∈ ℝ*)
1712frnd 6523 . . . . . . 7 (𝜑 → ran 𝑇 ⊆ ℝ)
18 ressxr 10687 . . . . . . 7 ℝ ⊆ ℝ*
1917, 18sstrdi 3981 . . . . . 6 (𝜑 → ran 𝑇 ⊆ ℝ*)
20 supxrcl 12711 . . . . . 6 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
2119, 20syl 17 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
2215mnfltd 12522 . . . . 5 (𝜑 → -∞ < (𝑇‘1))
2312ffnd 6517 . . . . . . 7 (𝜑𝑇 Fn ℕ)
24 fnfvelrn 6850 . . . . . . 7 ((𝑇 Fn ℕ ∧ 1 ∈ ℕ) → (𝑇‘1) ∈ ran 𝑇)
2523, 13, 24sylancl 588 . . . . . 6 (𝜑 → (𝑇‘1) ∈ ran 𝑇)
26 supxrub 12720 . . . . . 6 ((ran 𝑇 ⊆ ℝ* ∧ (𝑇‘1) ∈ ran 𝑇) → (𝑇‘1) ≤ sup(ran 𝑇, ℝ*, < ))
2719, 25, 26syl2anc 586 . . . . 5 (𝜑 → (𝑇‘1) ≤ sup(ran 𝑇, ℝ*, < ))
282, 16, 21, 22, 27xrltletrd 12557 . . . 4 (𝜑 → -∞ < sup(ran 𝑇, ℝ*, < ))
29 xrrebnd 12564 . . . . 5 (sup(ran 𝑇, ℝ*, < ) ∈ ℝ* → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(ran 𝑇, ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) < +∞)))
3021, 29syl 17 . . . 4 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(ran 𝑇, ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) < +∞)))
3128, 30mpbirand 705 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑇, ℝ*, < ) < +∞))
32 nfcv 2979 . . . . . . . . 9 𝑚𝐴
33 nfcsb1v 3909 . . . . . . . . 9 𝑛𝑚 / 𝑛𝐴
34 csbeq1a 3899 . . . . . . . . 9 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
3532, 33, 34cbviun 4963 . . . . . . . 8 𝑛 ∈ ℕ 𝐴 = 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴
3635fveq2i 6675 . . . . . . 7 (vol*‘ 𝑛 ∈ ℕ 𝐴) = (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴)
37 nfcv 2979 . . . . . . . . . 10 𝑚(vol*‘𝐴)
38 nfcv 2979 . . . . . . . . . . 11 𝑛vol*
3938, 33nffv 6682 . . . . . . . . . 10 𝑛(vol*‘𝑚 / 𝑛𝐴)
4034fveq2d 6676 . . . . . . . . . 10 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
4137, 39, 40cbvmpt 5169 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
426, 41eqtri 2846 . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
43 ovoliun.a . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
4443ralrimiva 3184 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
45 nfv 1915 . . . . . . . . . . . 12 𝑚 𝐴 ⊆ ℝ
46 nfcv 2979 . . . . . . . . . . . . 13 𝑛
4733, 46nfss 3962 . . . . . . . . . . . 12 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
4834sseq1d 4000 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
4945, 47, 48cbvralw 3443 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5044, 49sylib 220 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5150ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5251r19.21bi 3210 . . . . . . . 8 ((((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
535ralrimiva 3184 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
5437nfel1 2996 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
5539nfel1 2996 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
5640eleq1d 2899 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
5754, 55, 56cbvralw 3443 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
5853, 57sylib 220 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
5958ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6059r19.21bi 3210 . . . . . . . 8 ((((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
61 simplr 767 . . . . . . . 8 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
62 simpr 487 . . . . . . . 8 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
6310, 42, 52, 60, 61, 62ovoliunlem3 24107 . . . . . . 7 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥))
6436, 63eqbrtrid 5103 . . . . . 6 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥))
6564ralrimiva 3184 . . . . 5 ((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → ∀𝑥 ∈ ℝ+ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥))
66 iunss 4971 . . . . . . . 8 ( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
6744, 66sylibr 236 . . . . . . 7 (𝜑 𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
68 ovolcl 24081 . . . . . . 7 ( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
6967, 68syl 17 . . . . . 6 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
70 xralrple 12601 . . . . . 6 (((vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → ((vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥)))
7169, 70sylan 582 . . . . 5 ((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → ((vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥)))
7265, 71mpbird 259 . . . 4 ((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
7372ex 415 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
7431, 73sylbird 262 . 2 (𝜑 → (sup(ran 𝑇, ℝ*, < ) < +∞ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
75 nltpnft 12560 . . . 4 (sup(ran 𝑇, ℝ*, < ) ∈ ℝ* → (sup(ran 𝑇, ℝ*, < ) = +∞ ↔ ¬ sup(ran 𝑇, ℝ*, < ) < +∞))
7621, 75syl 17 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) = +∞ ↔ ¬ sup(ran 𝑇, ℝ*, < ) < +∞))
77 pnfge 12528 . . . . 5 ((vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ +∞)
7869, 77syl 17 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ +∞)
79 breq2 5072 . . . 4 (sup(ran 𝑇, ℝ*, < ) = +∞ → ((vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ) ↔ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ +∞))
8078, 79syl5ibrcom 249 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) = +∞ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
8176, 80sylbird 262 . 2 (𝜑 → (¬ sup(ran 𝑇, ℝ*, < ) < +∞ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
8274, 81pm2.61d 181 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  csb 3885  wss 3938   ciun 4921   class class class wbr 5068  cmpt 5148  ran crn 5558   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  cr 10538  1c1 10540   + caddc 10542  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  cn 11640  +crp 12392  seqcseq 13372  vol*covol 24065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-ioo 12745  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-ovol 24067
This theorem is referenced by:  ovoliun2  24109  voliunlem2  24154  voliunlem3  24155  ex-ovoliunnfl  34937
  Copyright terms: Public domain W3C validator