MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem1 Structured version   Visualization version   GIF version

Theorem ovoliunlem1 22994
Description: Lemma for ovoliun 22997. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun.r (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
ovoliun.b (𝜑𝐵 ∈ ℝ+)
ovoliun.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛)))
ovoliun.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ovoliun.h 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))))
ovoliun.j (𝜑𝐽:ℕ–1-1-onto→(ℕ × ℕ))
ovoliun.f (𝜑𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
ovoliun.x1 ((𝜑𝑛 ∈ ℕ) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
ovoliun.x2 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
ovoliun.k (𝜑𝐾 ∈ ℕ)
ovoliun.l1 (𝜑𝐿 ∈ ℤ)
ovoliun.l2 (𝜑 → ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽𝑤)) ≤ 𝐿)
Assertion
Ref Expression
ovoliunlem1 (𝜑 → (𝑈𝐾) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑛,𝐵   𝑘,𝐹,𝑛   𝑤,𝑘,𝐽,𝑛   𝑛,𝐾,𝑤   𝑘,𝐿,𝑛,𝑤   𝑛,𝐻   𝜑,𝑘,𝑛   𝑆,𝑘   𝑘,𝐺   𝑇,𝑘   𝑛,𝐺   𝑇,𝑛
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤,𝑛)   𝐵(𝑤)   𝑆(𝑤,𝑛)   𝑇(𝑤)   𝑈(𝑤,𝑘,𝑛)   𝐹(𝑤)   𝐺(𝑤)   𝐻(𝑤,𝑘)   𝐾(𝑘)

Proof of Theorem ovoliunlem1
Dummy variables 𝑗 𝑚 𝑥 𝑦 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6088 . . . . . . . . 9 (𝑗 = (𝐽𝑚) → (1st𝑗) = (1st ‘(𝐽𝑚)))
21fveq2d 6092 . . . . . . . 8 (𝑗 = (𝐽𝑚) → (𝐹‘(1st𝑗)) = (𝐹‘(1st ‘(𝐽𝑚))))
3 fveq2 6088 . . . . . . . 8 (𝑗 = (𝐽𝑚) → (2nd𝑗) = (2nd ‘(𝐽𝑚)))
42, 3fveq12d 6094 . . . . . . 7 (𝑗 = (𝐽𝑚) → ((𝐹‘(1st𝑗))‘(2nd𝑗)) = ((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))
54fveq2d 6092 . . . . . 6 (𝑗 = (𝐽𝑚) → (2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) = (2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))))
64fveq2d 6092 . . . . . 6 (𝑗 = (𝐽𝑚) → (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) = (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))))
75, 6oveq12d 6545 . . . . 5 (𝑗 = (𝐽𝑚) → ((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = ((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))))
8 fzfid 12589 . . . . 5 (𝜑 → (1...𝐾) ∈ Fin)
9 ovoliun.j . . . . . . 7 (𝜑𝐽:ℕ–1-1-onto→(ℕ × ℕ))
10 f1of1 6034 . . . . . . 7 (𝐽:ℕ–1-1-onto→(ℕ × ℕ) → 𝐽:ℕ–1-1→(ℕ × ℕ))
119, 10syl 17 . . . . . 6 (𝜑𝐽:ℕ–1-1→(ℕ × ℕ))
12 elfznn 12196 . . . . . . 7 (𝑚 ∈ (1...𝐾) → 𝑚 ∈ ℕ)
1312ssriv 3571 . . . . . 6 (1...𝐾) ⊆ ℕ
14 f1ores 6049 . . . . . 6 ((𝐽:ℕ–1-1→(ℕ × ℕ) ∧ (1...𝐾) ⊆ ℕ) → (𝐽 ↾ (1...𝐾)):(1...𝐾)–1-1-onto→(𝐽 “ (1...𝐾)))
1511, 13, 14sylancl 692 . . . . 5 (𝜑 → (𝐽 ↾ (1...𝐾)):(1...𝐾)–1-1-onto→(𝐽 “ (1...𝐾)))
16 fvres 6102 . . . . . 6 (𝑚 ∈ (1...𝐾) → ((𝐽 ↾ (1...𝐾))‘𝑚) = (𝐽𝑚))
1716adantl 480 . . . . 5 ((𝜑𝑚 ∈ (1...𝐾)) → ((𝐽 ↾ (1...𝐾))‘𝑚) = (𝐽𝑚))
18 inss2 3795 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
19 ovoliun.f . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
2019adantr 479 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
21 imassrn 5383 . . . . . . . . . . . . . . 15 (𝐽 “ (1...𝐾)) ⊆ ran 𝐽
22 f1of 6035 . . . . . . . . . . . . . . . . 17 (𝐽:ℕ–1-1-onto→(ℕ × ℕ) → 𝐽:ℕ⟶(ℕ × ℕ))
239, 22syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐽:ℕ⟶(ℕ × ℕ))
24 frn 5952 . . . . . . . . . . . . . . . 16 (𝐽:ℕ⟶(ℕ × ℕ) → ran 𝐽 ⊆ (ℕ × ℕ))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐽 ⊆ (ℕ × ℕ))
2621, 25syl5ss 3578 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 “ (1...𝐾)) ⊆ (ℕ × ℕ))
2726sselda 3567 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → 𝑗 ∈ (ℕ × ℕ))
28 xp1st 7066 . . . . . . . . . . . . 13 (𝑗 ∈ (ℕ × ℕ) → (1st𝑗) ∈ ℕ)
2927, 28syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (1st𝑗) ∈ ℕ)
3020, 29ffvelrnd 6253 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (𝐹‘(1st𝑗)) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
31 reex 9883 . . . . . . . . . . . . . 14 ℝ ∈ V
3231, 31xpex 6837 . . . . . . . . . . . . 13 (ℝ × ℝ) ∈ V
3332inex2 4723 . . . . . . . . . . . 12 ( ≤ ∩ (ℝ × ℝ)) ∈ V
34 nnex 10873 . . . . . . . . . . . 12 ℕ ∈ V
3533, 34elmap 7749 . . . . . . . . . . 11 ((𝐹‘(1st𝑗)) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ (𝐹‘(1st𝑗)):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3630, 35sylib 206 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (𝐹‘(1st𝑗)):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
37 xp2nd 7067 . . . . . . . . . . 11 (𝑗 ∈ (ℕ × ℕ) → (2nd𝑗) ∈ ℕ)
3827, 37syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (2nd𝑗) ∈ ℕ)
3936, 38ffvelrnd 6253 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → ((𝐹‘(1st𝑗))‘(2nd𝑗)) ∈ ( ≤ ∩ (ℝ × ℝ)))
4018, 39sseldi 3565 . . . . . . . 8 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → ((𝐹‘(1st𝑗))‘(2nd𝑗)) ∈ (ℝ × ℝ))
41 xp2nd 7067 . . . . . . . 8 (((𝐹‘(1st𝑗))‘(2nd𝑗)) ∈ (ℝ × ℝ) → (2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) ∈ ℝ)
4240, 41syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) ∈ ℝ)
43 xp1st 7066 . . . . . . . 8 (((𝐹‘(1st𝑗))‘(2nd𝑗)) ∈ (ℝ × ℝ) → (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) ∈ ℝ)
4440, 43syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) ∈ ℝ)
4542, 44resubcld 10309 . . . . . 6 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → ((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) ∈ ℝ)
4645recnd 9924 . . . . 5 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → ((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) ∈ ℂ)
477, 8, 15, 17, 46fsumf1o 14247 . . . 4 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = Σ𝑚 ∈ (1...𝐾)((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))))
4819adantr 479 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
4923ffvelrnda 6252 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) ∈ (ℕ × ℕ))
50 xp1st 7066 . . . . . . . . . . . 12 ((𝐽𝑘) ∈ (ℕ × ℕ) → (1st ‘(𝐽𝑘)) ∈ ℕ)
5149, 50syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐽𝑘)) ∈ ℕ)
5248, 51ffvelrnd 6253 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(1st ‘(𝐽𝑘))) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
5333, 34elmap 7749 . . . . . . . . . 10 ((𝐹‘(1st ‘(𝐽𝑘))) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ (𝐹‘(1st ‘(𝐽𝑘))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
5452, 53sylib 206 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(1st ‘(𝐽𝑘))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
55 xp2nd 7067 . . . . . . . . . 10 ((𝐽𝑘) ∈ (ℕ × ℕ) → (2nd ‘(𝐽𝑘)) ∈ ℕ)
5649, 55syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (2nd ‘(𝐽𝑘)) ∈ ℕ)
5754, 56ffvelrnd 6253 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))) ∈ ( ≤ ∩ (ℝ × ℝ)))
58 ovoliun.h . . . . . . . 8 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))))
5957, 58fmptd 6277 . . . . . . 7 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
60 eqid 2609 . . . . . . . 8 ((abs ∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻)
6160ovolfsval 22963 . . . . . . 7 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑚) = ((2nd ‘(𝐻𝑚)) − (1st ‘(𝐻𝑚))))
6259, 12, 61syl2an 492 . . . . . 6 ((𝜑𝑚 ∈ (1...𝐾)) → (((abs ∘ − ) ∘ 𝐻)‘𝑚) = ((2nd ‘(𝐻𝑚)) − (1st ‘(𝐻𝑚))))
6312adantl 480 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...𝐾)) → 𝑚 ∈ ℕ)
64 fveq2 6088 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐽𝑘) = (𝐽𝑚))
6564fveq2d 6092 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (1st ‘(𝐽𝑘)) = (1st ‘(𝐽𝑚)))
6665fveq2d 6092 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝐹‘(1st ‘(𝐽𝑘))) = (𝐹‘(1st ‘(𝐽𝑚))))
6764fveq2d 6092 . . . . . . . . . . 11 (𝑘 = 𝑚 → (2nd ‘(𝐽𝑘)) = (2nd ‘(𝐽𝑚)))
6866, 67fveq12d 6094 . . . . . . . . . 10 (𝑘 = 𝑚 → ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))) = ((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))
69 fvex 6098 . . . . . . . . . 10 ((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))) ∈ V
7068, 58, 69fvmpt 6176 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝐻𝑚) = ((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))
7163, 70syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ (1...𝐾)) → (𝐻𝑚) = ((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))
7271fveq2d 6092 . . . . . . 7 ((𝜑𝑚 ∈ (1...𝐾)) → (2nd ‘(𝐻𝑚)) = (2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))))
7371fveq2d 6092 . . . . . . 7 ((𝜑𝑚 ∈ (1...𝐾)) → (1st ‘(𝐻𝑚)) = (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))))
7472, 73oveq12d 6545 . . . . . 6 ((𝜑𝑚 ∈ (1...𝐾)) → ((2nd ‘(𝐻𝑚)) − (1st ‘(𝐻𝑚))) = ((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))))
7562, 74eqtrd 2643 . . . . 5 ((𝜑𝑚 ∈ (1...𝐾)) → (((abs ∘ − ) ∘ 𝐻)‘𝑚) = ((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))))
76 ovoliun.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
77 nnuz 11555 . . . . . 6 ℕ = (ℤ‘1)
7876, 77syl6eleq 2697 . . . . 5 (𝜑𝐾 ∈ (ℤ‘1))
79 ffvelrn 6250 . . . . . . . . . . 11 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ∈ ( ≤ ∩ (ℝ × ℝ)))
8059, 12, 79syl2an 492 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝐾)) → (𝐻𝑚) ∈ ( ≤ ∩ (ℝ × ℝ)))
8118, 80sseldi 3565 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...𝐾)) → (𝐻𝑚) ∈ (ℝ × ℝ))
82 xp2nd 7067 . . . . . . . . 9 ((𝐻𝑚) ∈ (ℝ × ℝ) → (2nd ‘(𝐻𝑚)) ∈ ℝ)
8381, 82syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ (1...𝐾)) → (2nd ‘(𝐻𝑚)) ∈ ℝ)
84 xp1st 7066 . . . . . . . . 9 ((𝐻𝑚) ∈ (ℝ × ℝ) → (1st ‘(𝐻𝑚)) ∈ ℝ)
8581, 84syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ (1...𝐾)) → (1st ‘(𝐻𝑚)) ∈ ℝ)
8683, 85resubcld 10309 . . . . . . 7 ((𝜑𝑚 ∈ (1...𝐾)) → ((2nd ‘(𝐻𝑚)) − (1st ‘(𝐻𝑚))) ∈ ℝ)
8786recnd 9924 . . . . . 6 ((𝜑𝑚 ∈ (1...𝐾)) → ((2nd ‘(𝐻𝑚)) − (1st ‘(𝐻𝑚))) ∈ ℂ)
8874, 87eqeltrrd 2688 . . . . 5 ((𝜑𝑚 ∈ (1...𝐾)) → ((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))) ∈ ℂ)
8975, 78, 88fsumser 14254 . . . 4 (𝜑 → Σ𝑚 ∈ (1...𝐾)((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝐾))
9047, 89eqtrd 2643 . . 3 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝐾))
91 ovoliun.u . . . 4 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
9291fveq1i 6089 . . 3 (𝑈𝐾) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝐾)
9390, 92syl6eqr 2661 . 2 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = (𝑈𝐾))
94 f1oeng 7837 . . . . . . 7 (((1...𝐾) ∈ Fin ∧ (𝐽 ↾ (1...𝐾)):(1...𝐾)–1-1-onto→(𝐽 “ (1...𝐾))) → (1...𝐾) ≈ (𝐽 “ (1...𝐾)))
958, 15, 94syl2anc 690 . . . . . 6 (𝜑 → (1...𝐾) ≈ (𝐽 “ (1...𝐾)))
9695ensymd 7870 . . . . 5 (𝜑 → (𝐽 “ (1...𝐾)) ≈ (1...𝐾))
97 enfii 8039 . . . . 5 (((1...𝐾) ∈ Fin ∧ (𝐽 “ (1...𝐾)) ≈ (1...𝐾)) → (𝐽 “ (1...𝐾)) ∈ Fin)
988, 96, 97syl2anc 690 . . . 4 (𝜑 → (𝐽 “ (1...𝐾)) ∈ Fin)
9998, 45fsumrecl 14258 . . 3 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) ∈ ℝ)
100 fzfid 12589 . . . . 5 (𝜑 → (1...𝐿) ∈ Fin)
101 elfznn 12196 . . . . . 6 (𝑛 ∈ (1...𝐿) → 𝑛 ∈ ℕ)
102 ovoliun.v . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
103101, 102sylan2 489 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → (vol*‘𝐴) ∈ ℝ)
104100, 103fsumrecl 14258 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) ∈ ℝ)
105 ovoliun.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
106105rpred 11704 . . . . . 6 (𝜑𝐵 ∈ ℝ)
107 2nn 11032 . . . . . . . 8 2 ∈ ℕ
108 nnnn0 11146 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
109 nnexpcl 12690 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
110107, 108, 109sylancr 693 . . . . . . 7 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
111101, 110syl 17 . . . . . 6 (𝑛 ∈ (1...𝐿) → (2↑𝑛) ∈ ℕ)
112 nndivre 10903 . . . . . 6 ((𝐵 ∈ ℝ ∧ (2↑𝑛) ∈ ℕ) → (𝐵 / (2↑𝑛)) ∈ ℝ)
113106, 111, 112syl2an 492 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐵 / (2↑𝑛)) ∈ ℝ)
114100, 113fsumrecl 14258 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛)) ∈ ℝ)
115104, 114readdcld 9925 . . 3 (𝜑 → (Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) + Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛))) ∈ ℝ)
116 ovoliun.r . . . 4 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
117116, 106readdcld 9925 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) + 𝐵) ∈ ℝ)
118 relxp 5139 . . . . . . . . . . . . . . 15 Rel ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))
119 relres 5333 . . . . . . . . . . . . . . 15 Rel ((𝐽 “ (1...𝐾)) ↾ {𝑛})
120 opelxp 5060 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ↔ (𝑥 ∈ {𝑛} ∧ 𝑦 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})))
121 vex 3175 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
122121opelres 5309 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ∈ ((𝐽 “ (1...𝐾)) ↾ {𝑛}) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) ∧ 𝑥 ∈ {𝑛}))
123 ancom 464 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ {𝑛} ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾))) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) ∧ 𝑥 ∈ {𝑛}))
124 elsni 4141 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑛} → 𝑥 = 𝑛)
125124opeq1d 4340 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {𝑛} → ⟨𝑥, 𝑦⟩ = ⟨𝑛, 𝑦⟩)
126125eleq1d 2671 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑛} → (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) ↔ ⟨𝑛, 𝑦⟩ ∈ (𝐽 “ (1...𝐾))))
127 vex 3175 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ V
128127, 121elimasn 5396 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}) ↔ ⟨𝑛, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)))
129126, 128syl6bbr 276 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑛} → (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) ↔ 𝑦 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})))
130129pm5.32i 666 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ {𝑛} ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾))) ↔ (𝑥 ∈ {𝑛} ∧ 𝑦 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})))
131122, 123, 1303bitr2ri 287 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ {𝑛} ∧ 𝑦 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽 “ (1...𝐾)) ↾ {𝑛}))
132120, 131bitri 262 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽 “ (1...𝐾)) ↾ {𝑛}))
133118, 119, 132eqrelriiv 5126 . . . . . . . . . . . . . 14 ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = ((𝐽 “ (1...𝐾)) ↾ {𝑛})
134 df-res 5040 . . . . . . . . . . . . . 14 ((𝐽 “ (1...𝐾)) ↾ {𝑛}) = ((𝐽 “ (1...𝐾)) ∩ ({𝑛} × V))
135133, 134eqtri 2631 . . . . . . . . . . . . 13 ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = ((𝐽 “ (1...𝐾)) ∩ ({𝑛} × V))
136135a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = ((𝐽 “ (1...𝐾)) ∩ ({𝑛} × V)))
137136iuneq2dv 4472 . . . . . . . . . . 11 (𝜑 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = 𝑛 ∈ (1...𝐿)((𝐽 “ (1...𝐾)) ∩ ({𝑛} × V)))
138 iunin2 4514 . . . . . . . . . . 11 𝑛 ∈ (1...𝐿)((𝐽 “ (1...𝐾)) ∩ ({𝑛} × V)) = ((𝐽 “ (1...𝐾)) ∩ 𝑛 ∈ (1...𝐿)({𝑛} × V))
139137, 138syl6eq 2659 . . . . . . . . . 10 (𝜑 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = ((𝐽 “ (1...𝐾)) ∩ 𝑛 ∈ (1...𝐿)({𝑛} × V)))
140 relxp 5139 . . . . . . . . . . . . . 14 Rel (ℕ × ℕ)
141 relss 5119 . . . . . . . . . . . . . 14 ((𝐽 “ (1...𝐾)) ⊆ (ℕ × ℕ) → (Rel (ℕ × ℕ) → Rel (𝐽 “ (1...𝐾))))
14226, 140, 141mpisyl 21 . . . . . . . . . . . . 13 (𝜑 → Rel (𝐽 “ (1...𝐾)))
143 ovoliun.l2 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽𝑤)) ≤ 𝐿)
144 ffn 5944 . . . . . . . . . . . . . . . . . . . . 21 (𝐽:ℕ⟶(ℕ × ℕ) → 𝐽 Fn ℕ)
14523, 144syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 Fn ℕ)
146 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = (𝐽𝑤) → (1st𝑗) = (1st ‘(𝐽𝑤)))
147146breq1d 4587 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (𝐽𝑤) → ((1st𝑗) ≤ 𝐿 ↔ (1st ‘(𝐽𝑤)) ≤ 𝐿))
148147ralima 6380 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 Fn ℕ ∧ (1...𝐾) ⊆ ℕ) → (∀𝑗 ∈ (𝐽 “ (1...𝐾))(1st𝑗) ≤ 𝐿 ↔ ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽𝑤)) ≤ 𝐿))
149145, 13, 148sylancl 692 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∀𝑗 ∈ (𝐽 “ (1...𝐾))(1st𝑗) ≤ 𝐿 ↔ ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽𝑤)) ≤ 𝐿))
150143, 149mpbird 245 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑗 ∈ (𝐽 “ (1...𝐾))(1st𝑗) ≤ 𝐿)
151150r19.21bi 2915 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (1st𝑗) ≤ 𝐿)
15229, 77syl6eleq 2697 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (1st𝑗) ∈ (ℤ‘1))
153 ovoliun.l1 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ ℤ)
154153adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → 𝐿 ∈ ℤ)
155 elfz5 12160 . . . . . . . . . . . . . . . . . 18 (((1st𝑗) ∈ (ℤ‘1) ∧ 𝐿 ∈ ℤ) → ((1st𝑗) ∈ (1...𝐿) ↔ (1st𝑗) ≤ 𝐿))
156152, 154, 155syl2anc 690 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → ((1st𝑗) ∈ (1...𝐿) ↔ (1st𝑗) ≤ 𝐿))
157151, 156mpbird 245 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (1st𝑗) ∈ (1...𝐿))
158157ralrimiva 2948 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗 ∈ (𝐽 “ (1...𝐾))(1st𝑗) ∈ (1...𝐿))
159 vex 3175 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
160159, 121op1std 7046 . . . . . . . . . . . . . . . . 17 (𝑗 = ⟨𝑥, 𝑦⟩ → (1st𝑗) = 𝑥)
161160eleq1d 2671 . . . . . . . . . . . . . . . 16 (𝑗 = ⟨𝑥, 𝑦⟩ → ((1st𝑗) ∈ (1...𝐿) ↔ 𝑥 ∈ (1...𝐿)))
162161rspccv 3278 . . . . . . . . . . . . . . 15 (∀𝑗 ∈ (𝐽 “ (1...𝐾))(1st𝑗) ∈ (1...𝐿) → (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) → 𝑥 ∈ (1...𝐿)))
163158, 162syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) → 𝑥 ∈ (1...𝐿)))
164 opelxp 5060 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ( 𝑛 ∈ (1...𝐿){𝑛} × V) ↔ (𝑥 𝑛 ∈ (1...𝐿){𝑛} ∧ 𝑦 ∈ V))
165121biantru 524 . . . . . . . . . . . . . . 15 (𝑥 𝑛 ∈ (1...𝐿){𝑛} ↔ (𝑥 𝑛 ∈ (1...𝐿){𝑛} ∧ 𝑦 ∈ V))
166 iunid 4505 . . . . . . . . . . . . . . . 16 𝑛 ∈ (1...𝐿){𝑛} = (1...𝐿)
167166eleq2i 2679 . . . . . . . . . . . . . . 15 (𝑥 𝑛 ∈ (1...𝐿){𝑛} ↔ 𝑥 ∈ (1...𝐿))
168164, 165, 1673bitr2i 286 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ ( 𝑛 ∈ (1...𝐿){𝑛} × V) ↔ 𝑥 ∈ (1...𝐿))
169163, 168syl6ibr 240 . . . . . . . . . . . . 13 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) → ⟨𝑥, 𝑦⟩ ∈ ( 𝑛 ∈ (1...𝐿){𝑛} × V)))
170142, 169relssdv 5124 . . . . . . . . . . . 12 (𝜑 → (𝐽 “ (1...𝐾)) ⊆ ( 𝑛 ∈ (1...𝐿){𝑛} × V))
171 xpiundir 5087 . . . . . . . . . . . 12 ( 𝑛 ∈ (1...𝐿){𝑛} × V) = 𝑛 ∈ (1...𝐿)({𝑛} × V)
172170, 171syl6sseq 3613 . . . . . . . . . . 11 (𝜑 → (𝐽 “ (1...𝐾)) ⊆ 𝑛 ∈ (1...𝐿)({𝑛} × V))
173 df-ss 3553 . . . . . . . . . . 11 ((𝐽 “ (1...𝐾)) ⊆ 𝑛 ∈ (1...𝐿)({𝑛} × V) ↔ ((𝐽 “ (1...𝐾)) ∩ 𝑛 ∈ (1...𝐿)({𝑛} × V)) = (𝐽 “ (1...𝐾)))
174172, 173sylib 206 . . . . . . . . . 10 (𝜑 → ((𝐽 “ (1...𝐾)) ∩ 𝑛 ∈ (1...𝐿)({𝑛} × V)) = (𝐽 “ (1...𝐾)))
175139, 174eqtrd 2643 . . . . . . . . 9 (𝜑 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = (𝐽 “ (1...𝐾)))
176175, 98eqeltrd 2687 . . . . . . . 8 (𝜑 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin)
177 ssiun2 4493 . . . . . . . 8 (𝑛 ∈ (1...𝐿) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ⊆ 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})))
178 ssfi 8042 . . . . . . . 8 (( 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin ∧ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ⊆ 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin)
179176, 177, 178syl2an 492 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin)
180 2ndconst 7130 . . . . . . . . . 10 (𝑛 ∈ V → (2nd ↾ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))):({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))–1-1-onto→((𝐽 “ (1...𝐾)) “ {𝑛}))
181127, 180ax-mp 5 . . . . . . . . 9 (2nd ↾ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))):({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))–1-1-onto→((𝐽 “ (1...𝐾)) “ {𝑛})
182 f1oeng 7837 . . . . . . . . 9 ((({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin ∧ (2nd ↾ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))):({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))–1-1-onto→((𝐽 “ (1...𝐾)) “ {𝑛})) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ≈ ((𝐽 “ (1...𝐾)) “ {𝑛}))
183179, 181, 182sylancl 692 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ≈ ((𝐽 “ (1...𝐾)) “ {𝑛}))
184183ensymd 7870 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → ((𝐽 “ (1...𝐾)) “ {𝑛}) ≈ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})))
185 enfii 8039 . . . . . . 7 ((({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin ∧ ((𝐽 “ (1...𝐾)) “ {𝑛}) ≈ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ((𝐽 “ (1...𝐾)) “ {𝑛}) ∈ Fin)
186179, 184, 185syl2anc 690 . . . . . 6 ((𝜑𝑛 ∈ (1...𝐿)) → ((𝐽 “ (1...𝐾)) “ {𝑛}) ∈ Fin)
187 ffvelrn 6250 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
18819, 101, 187syl2an 492 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐹𝑛) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
18933, 34elmap 7749 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
190188, 189sylib 206 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
191190adantrr 748 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
192 imassrn 5383 . . . . . . . . . . . . . 14 ((𝐽 “ (1...𝐾)) “ {𝑛}) ⊆ ran (𝐽 “ (1...𝐾))
19326adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐽 “ (1...𝐾)) ⊆ (ℕ × ℕ))
194 rnss 5262 . . . . . . . . . . . . . . . 16 ((𝐽 “ (1...𝐾)) ⊆ (ℕ × ℕ) → ran (𝐽 “ (1...𝐾)) ⊆ ran (ℕ × ℕ))
195193, 194syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝐿)) → ran (𝐽 “ (1...𝐾)) ⊆ ran (ℕ × ℕ))
196 rnxpid 5472 . . . . . . . . . . . . . . 15 ran (ℕ × ℕ) = ℕ
197195, 196syl6sseq 3613 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝐿)) → ran (𝐽 “ (1...𝐾)) ⊆ ℕ)
198192, 197syl5ss 3578 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝐿)) → ((𝐽 “ (1...𝐾)) “ {𝑛}) ⊆ ℕ)
199198sseld 3566 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → (𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}) → 𝑖 ∈ ℕ))
200199impr 646 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → 𝑖 ∈ ℕ)
201191, 200ffvelrnd 6253 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ((𝐹𝑛)‘𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
20218, 201sseldi 3565 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ((𝐹𝑛)‘𝑖) ∈ (ℝ × ℝ))
203 xp2nd 7067 . . . . . . . . 9 (((𝐹𝑛)‘𝑖) ∈ (ℝ × ℝ) → (2nd ‘((𝐹𝑛)‘𝑖)) ∈ ℝ)
204202, 203syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → (2nd ‘((𝐹𝑛)‘𝑖)) ∈ ℝ)
205 xp1st 7066 . . . . . . . . 9 (((𝐹𝑛)‘𝑖) ∈ (ℝ × ℝ) → (1st ‘((𝐹𝑛)‘𝑖)) ∈ ℝ)
206202, 205syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → (1st ‘((𝐹𝑛)‘𝑖)) ∈ ℝ)
207204, 206resubcld 10309 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ)
208207anassrs 677 . . . . . 6 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})) → ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ)
209186, 208fsumrecl 14258 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ)
210106, 110, 112syl2an 492 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (2↑𝑛)) ∈ ℝ)
211102, 210readdcld 9925 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ∈ ℝ)
212101, 211sylan2 489 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ∈ ℝ)
213 eqid 2609 . . . . . . . . . . . 12 ((abs ∘ − ) ∘ (𝐹𝑛)) = ((abs ∘ − ) ∘ (𝐹𝑛))
214 ovoliun.s . . . . . . . . . . . 12 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛)))
215213, 214ovolsf 22965 . . . . . . . . . . 11 ((𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
216190, 215syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝐿)) → 𝑆:ℕ⟶(0[,)+∞))
217 frn 5952 . . . . . . . . . 10 (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞))
218216, 217syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝐿)) → ran 𝑆 ⊆ (0[,)+∞))
219 icossxr 12085 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
220218, 219syl6ss 3579 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → ran 𝑆 ⊆ ℝ*)
221 supxrcl 11973 . . . . . . . 8 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
222220, 221syl 17 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
223 mnfxr 11783 . . . . . . . . 9 -∞ ∈ ℝ*
224223a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → -∞ ∈ ℝ*)
225103rexrd 9945 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → (vol*‘𝐴) ∈ ℝ*)
226 mnflt 11794 . . . . . . . . 9 ((vol*‘𝐴) ∈ ℝ → -∞ < (vol*‘𝐴))
227103, 226syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → -∞ < (vol*‘𝐴))
228 ovoliun.x1 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
229101, 228sylan2 489 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝐿)) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
230214ovollb 22971 . . . . . . . . 9 (((𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ (𝐹𝑛))) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
231190, 229, 230syl2anc 690 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
232224, 225, 222, 227, 231xrltletrd 11827 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → -∞ < sup(ran 𝑆, ℝ*, < ))
233 ovoliun.x2 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
234101, 233sylan2 489 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
235 xrre 11833 . . . . . . 7 (((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ∈ ℝ) ∧ (-∞ < sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
236222, 212, 232, 234, 235syl22anc 1318 . . . . . 6 ((𝜑𝑛 ∈ (1...𝐿)) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
237 1zzd 11241 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → 1 ∈ ℤ)
238213ovolfsval 22963 . . . . . . . . 9 (((𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐹𝑛))‘𝑖) = ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))))
239190, 238sylan 486 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐹𝑛))‘𝑖) = ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))))
240213ovolfsf 22964 . . . . . . . . . . . . 13 ((𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐹𝑛)):ℕ⟶(0[,)+∞))
241190, 240syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → ((abs ∘ − ) ∘ (𝐹𝑛)):ℕ⟶(0[,)+∞))
242241ffvelrnda 6252 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐹𝑛))‘𝑖) ∈ (0[,)+∞))
243239, 242eqeltrrd 2688 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ (0[,)+∞))
244 elrege0 12105 . . . . . . . . . 10 (((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ (0[,)+∞) ↔ (((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ ∧ 0 ≤ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖)))))
245243, 244sylib 206 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → (((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ ∧ 0 ≤ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖)))))
246245simpld 473 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ)
247245simprd 477 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → 0 ≤ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))))
248 supxrub 11982 . . . . . . . . . . . . . . 15 ((ran 𝑆 ⊆ ℝ*𝑧 ∈ ran 𝑆) → 𝑧 ≤ sup(ran 𝑆, ℝ*, < ))
249220, 248sylan 486 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑧 ∈ ran 𝑆) → 𝑧 ≤ sup(ran 𝑆, ℝ*, < ))
250249ralrimiva 2948 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝐿)) → ∀𝑧 ∈ ran 𝑆 𝑧 ≤ sup(ran 𝑆, ℝ*, < ))
251 breq2 4581 . . . . . . . . . . . . . . 15 (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝑧𝑥𝑧 ≤ sup(ran 𝑆, ℝ*, < )))
252251ralbidv 2968 . . . . . . . . . . . . . 14 (𝑥 = sup(ran 𝑆, ℝ*, < ) → (∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ sup(ran 𝑆, ℝ*, < )))
253252rspcev 3281 . . . . . . . . . . . . 13 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ ∧ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥)
254236, 250, 253syl2anc 690 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥)
255 ffn 5944 . . . . . . . . . . . . . . 15 (𝑆:ℕ⟶(0[,)+∞) → 𝑆 Fn ℕ)
256216, 255syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝐿)) → 𝑆 Fn ℕ)
257 breq1 4580 . . . . . . . . . . . . . . 15 (𝑧 = (𝑆𝑘) → (𝑧𝑥 ↔ (𝑆𝑘) ≤ 𝑥))
258257ralrn 6255 . . . . . . . . . . . . . 14 (𝑆 Fn ℕ → (∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
259256, 258syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝐿)) → (∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
260259rexbidv 3033 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
261254, 260mpbid 220 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝐿)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥)
26277, 214, 237, 239, 246, 247, 261isumsup2 14363 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝐿)) → 𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
263214, 262syl5eqbrr 4613 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝐿)) → seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛))) ⇝ sup(ran 𝑆, ℝ, < ))
264 climrel 14017 . . . . . . . . . 10 Rel ⇝
265264releldmi 5270 . . . . . . . . 9 (seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛))) ⇝ sup(ran 𝑆, ℝ, < ) → seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛))) ∈ dom ⇝ )
266263, 265syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛))) ∈ dom ⇝ )
26777, 237, 186, 198, 239, 246, 247, 266isumless 14362 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ≤ Σ𝑖 ∈ ℕ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))))
26877, 214, 237, 239, 246, 247, 261isumsup 14364 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ℕ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) = sup(ran 𝑆, ℝ, < ))
269 rge0ssre 12107 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
270218, 269syl6ss 3579 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝐿)) → ran 𝑆 ⊆ ℝ)
271 1nn 10878 . . . . . . . . . . . 12 1 ∈ ℕ
272 fdm 5950 . . . . . . . . . . . . 13 (𝑆:ℕ⟶(0[,)+∞) → dom 𝑆 = ℕ)
273216, 272syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → dom 𝑆 = ℕ)
274271, 273syl5eleqr 2694 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝐿)) → 1 ∈ dom 𝑆)
275 ne0i 3879 . . . . . . . . . . 11 (1 ∈ dom 𝑆 → dom 𝑆 ≠ ∅)
276274, 275syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝐿)) → dom 𝑆 ≠ ∅)
277 dm0rn0 5250 . . . . . . . . . . 11 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
278277necon3bii 2833 . . . . . . . . . 10 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
279276, 278sylib 206 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝐿)) → ran 𝑆 ≠ ∅)
280 supxrre 11985 . . . . . . . . 9 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
281270, 279, 254, 280syl3anc 1317 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
282268, 281eqtr4d 2646 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ℕ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) = sup(ran 𝑆, ℝ*, < ))
283267, 282breqtrd 4603 . . . . . 6 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ≤ sup(ran 𝑆, ℝ*, < ))
284209, 236, 212, 283, 234letrd 10045 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
285100, 209, 212, 284fsumle 14318 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ≤ Σ𝑛 ∈ (1...𝐿)((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
286 vex 3175 . . . . . . . . . . 11 𝑖 ∈ V
287127, 286op1std 7046 . . . . . . . . . 10 (𝑗 = ⟨𝑛, 𝑖⟩ → (1st𝑗) = 𝑛)
288287fveq2d 6092 . . . . . . . . 9 (𝑗 = ⟨𝑛, 𝑖⟩ → (𝐹‘(1st𝑗)) = (𝐹𝑛))
289127, 286op2ndd 7047 . . . . . . . . 9 (𝑗 = ⟨𝑛, 𝑖⟩ → (2nd𝑗) = 𝑖)
290288, 289fveq12d 6094 . . . . . . . 8 (𝑗 = ⟨𝑛, 𝑖⟩ → ((𝐹‘(1st𝑗))‘(2nd𝑗)) = ((𝐹𝑛)‘𝑖))
291290fveq2d 6092 . . . . . . 7 (𝑗 = ⟨𝑛, 𝑖⟩ → (2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) = (2nd ‘((𝐹𝑛)‘𝑖)))
292290fveq2d 6092 . . . . . . 7 (𝑗 = ⟨𝑛, 𝑖⟩ → (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) = (1st ‘((𝐹𝑛)‘𝑖)))
293291, 292oveq12d 6545 . . . . . 6 (𝑗 = ⟨𝑛, 𝑖⟩ → ((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))))
294207recnd 9924 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℂ)
295293, 100, 186, 294fsum2d 14290 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...𝐿𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) = Σ𝑗 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))))
296175sumeq1d 14225 . . . . 5 (𝜑 → Σ𝑗 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))))
297295, 296eqtrd 2643 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) = Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))))
298103recnd 9924 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → (vol*‘𝐴) ∈ ℂ)
299113recnd 9924 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐵 / (2↑𝑛)) ∈ ℂ)
300100, 298, 299fsumadd 14263 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿)((vol*‘𝐴) + (𝐵 / (2↑𝑛))) = (Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) + Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛))))
301285, 297, 3003brtr3d 4608 . . 3 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) ≤ (Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) + Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛))))
302 1zzd 11241 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
303 simpr 475 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
304 ovoliun.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
305304fvmpt2 6185 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐺𝑛) = (vol*‘𝐴))
306303, 102, 305syl2anc 690 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = (vol*‘𝐴))
307306, 102eqeltrd 2687 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
30877, 302, 307serfre 12647 . . . . . . . 8 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
309 ovoliun.t . . . . . . . . 9 𝑇 = seq1( + , 𝐺)
310309feq1i 5935 . . . . . . . 8 (𝑇:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
311308, 310sylibr 222 . . . . . . 7 (𝜑𝑇:ℕ⟶ℝ)
312 frn 5952 . . . . . . 7 (𝑇:ℕ⟶ℝ → ran 𝑇 ⊆ ℝ)
313311, 312syl 17 . . . . . 6 (𝜑 → ran 𝑇 ⊆ ℝ)
314 ressxr 9939 . . . . . 6 ℝ ⊆ ℝ*
315313, 314syl6ss 3579 . . . . 5 (𝜑 → ran 𝑇 ⊆ ℝ*)
316101, 306sylan2 489 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐺𝑛) = (vol*‘𝐴))
317 1red 9911 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
318 ffvelrn 6250 . . . . . . . . . . . . 13 ((𝐽:ℕ⟶(ℕ × ℕ) ∧ 1 ∈ ℕ) → (𝐽‘1) ∈ (ℕ × ℕ))
31923, 271, 318sylancl 692 . . . . . . . . . . . 12 (𝜑 → (𝐽‘1) ∈ (ℕ × ℕ))
320 xp1st 7066 . . . . . . . . . . . 12 ((𝐽‘1) ∈ (ℕ × ℕ) → (1st ‘(𝐽‘1)) ∈ ℕ)
321319, 320syl 17 . . . . . . . . . . 11 (𝜑 → (1st ‘(𝐽‘1)) ∈ ℕ)
322321nnred 10882 . . . . . . . . . 10 (𝜑 → (1st ‘(𝐽‘1)) ∈ ℝ)
323153zred 11314 . . . . . . . . . 10 (𝜑𝐿 ∈ ℝ)
324321nnge1d 10910 . . . . . . . . . 10 (𝜑 → 1 ≤ (1st ‘(𝐽‘1)))
325 eluzfz1 12174 . . . . . . . . . . . 12 (𝐾 ∈ (ℤ‘1) → 1 ∈ (1...𝐾))
32678, 325syl 17 . . . . . . . . . . 11 (𝜑 → 1 ∈ (1...𝐾))
327 fveq2 6088 . . . . . . . . . . . . . 14 (𝑤 = 1 → (𝐽𝑤) = (𝐽‘1))
328327fveq2d 6092 . . . . . . . . . . . . 13 (𝑤 = 1 → (1st ‘(𝐽𝑤)) = (1st ‘(𝐽‘1)))
329328breq1d 4587 . . . . . . . . . . . 12 (𝑤 = 1 → ((1st ‘(𝐽𝑤)) ≤ 𝐿 ↔ (1st ‘(𝐽‘1)) ≤ 𝐿))
330329rspcv 3277 . . . . . . . . . . 11 (1 ∈ (1...𝐾) → (∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽𝑤)) ≤ 𝐿 → (1st ‘(𝐽‘1)) ≤ 𝐿))
331326, 143, 330sylc 62 . . . . . . . . . 10 (𝜑 → (1st ‘(𝐽‘1)) ≤ 𝐿)
332317, 322, 323, 324, 331letrd 10045 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐿)
333 elnnz1 11236 . . . . . . . . 9 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 1 ≤ 𝐿))
334153, 332, 333sylanbrc 694 . . . . . . . 8 (𝜑𝐿 ∈ ℕ)
335334, 77syl6eleq 2697 . . . . . . 7 (𝜑𝐿 ∈ (ℤ‘1))
336316, 335, 298fsumser 14254 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) = (seq1( + , 𝐺)‘𝐿))
337 seqfn 12630 . . . . . . . . 9 (1 ∈ ℤ → seq1( + , 𝐺) Fn (ℤ‘1))
338302, 337syl 17 . . . . . . . 8 (𝜑 → seq1( + , 𝐺) Fn (ℤ‘1))
339 fnfvelrn 6249 . . . . . . . 8 ((seq1( + , 𝐺) Fn (ℤ‘1) ∧ 𝐿 ∈ (ℤ‘1)) → (seq1( + , 𝐺)‘𝐿) ∈ ran seq1( + , 𝐺))
340338, 335, 339syl2anc 690 . . . . . . 7 (𝜑 → (seq1( + , 𝐺)‘𝐿) ∈ ran seq1( + , 𝐺))
341309rneqi 5260 . . . . . . 7 ran 𝑇 = ran seq1( + , 𝐺)
342340, 341syl6eleqr 2698 . . . . . 6 (𝜑 → (seq1( + , 𝐺)‘𝐿) ∈ ran 𝑇)
343336, 342eqeltrd 2687 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) ∈ ran 𝑇)
344 supxrub 11982 . . . . 5 ((ran 𝑇 ⊆ ℝ* ∧ Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) ∈ ran 𝑇) → Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
345315, 343, 344syl2anc 690 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
346106recnd 9924 . . . . . 6 (𝜑𝐵 ∈ ℂ)
347 geo2sum 14389 . . . . . 6 ((𝐿 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛)) = (𝐵 − (𝐵 / (2↑𝐿))))
348334, 346, 347syl2anc 690 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛)) = (𝐵 − (𝐵 / (2↑𝐿))))
349334nnnn0d 11198 . . . . . . . . . 10 (𝜑𝐿 ∈ ℕ0)
350 nnexpcl 12690 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝐿 ∈ ℕ0) → (2↑𝐿) ∈ ℕ)
351107, 349, 350sylancr 693 . . . . . . . . 9 (𝜑 → (2↑𝐿) ∈ ℕ)
352351nnrpd 11702 . . . . . . . 8 (𝜑 → (2↑𝐿) ∈ ℝ+)
353105, 352rpdivcld 11721 . . . . . . 7 (𝜑 → (𝐵 / (2↑𝐿)) ∈ ℝ+)
354353rpge0d 11708 . . . . . 6 (𝜑 → 0 ≤ (𝐵 / (2↑𝐿)))
355106, 351nndivred 10916 . . . . . . 7 (𝜑 → (𝐵 / (2↑𝐿)) ∈ ℝ)
356106, 355subge02d 10468 . . . . . 6 (𝜑 → (0 ≤ (𝐵 / (2↑𝐿)) ↔ (𝐵 − (𝐵 / (2↑𝐿))) ≤ 𝐵))
357354, 356mpbid 220 . . . . 5 (𝜑 → (𝐵 − (𝐵 / (2↑𝐿))) ≤ 𝐵)
358348, 357eqbrtrd 4599 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛)) ≤ 𝐵)
359104, 114, 116, 106, 345, 358le2addd 10495 . . 3 (𝜑 → (Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) + Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛))) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
36099, 115, 117, 301, 359letrd 10045 . 2 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
36193, 360eqbrtrrd 4601 1 (𝜑 → (𝑈𝐾) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  Vcvv 3172  cin 3538  wss 3539  c0 3873  {csn 4124  cop 4130   cuni 4366   ciun 4449   class class class wbr 4577  cmpt 4637   × cxp 5026  dom cdm 5028  ran crn 5029  cres 5030  cima 5031  ccom 5032  Rel wrel 5033   Fn wfn 5785  wf 5786  1-1wf1 5787  1-1-ontowf1o 5789  cfv 5790  (class class class)co 6527  1st c1st 7034  2nd c2nd 7035  𝑚 cmap 7721  cen 7815  Fincfn 7818  supcsup 8206  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795  +∞cpnf 9927  -∞cmnf 9928  *cxr 9929   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  0cn0 11139  cz 11210  cuz 11519  +crp 11664  (,)cioo 12002  [,)cico 12004  ...cfz 12152  seqcseq 12618  cexp 12677  abscabs 13768  cli 14009  Σcsu 14210  vol*covol 22955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-ioo 12006  df-ico 12008  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-rlim 14014  df-sum 14211  df-ovol 22957
This theorem is referenced by:  ovoliunlem2  22995
  Copyright terms: Public domain W3C validator