MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolmge0 Structured version   Visualization version   GIF version

Theorem ovolmge0 24080
Description: The set 𝑀 is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
elovolm.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolmge0 (𝐵𝑀 → 0 ≤ 𝐵)
Distinct variable groups:   𝐵,𝑓,𝑦   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑓)   𝑀(𝑦,𝑓)

Proof of Theorem ovolmge0
StepHypRef Expression
1 elovolm.1 . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
21elovolm 24078 . 2 (𝐵𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3 elovolmlem 24077 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 eqid 2823 . . . . . . . . . 10 ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓)
5 eqid 2823 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
64, 5ovolsf 24075 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞))
7 1nn 11651 . . . . . . . . 9 1 ∈ ℕ
8 ffvelrn 6851 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞))
96, 7, 8sylancl 588 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞))
10 elrege0 12845 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) ↔ ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ ∧ 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1)))
1110simprbi 499 . . . . . . . 8 ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) → 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))
129, 11syl 17 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))
136frnd 6523 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞))
14 icossxr 12824 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
1513, 14sstrdi 3981 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
166ffnd 6517 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ)
17 fnfvelrn 6850 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
1816, 7, 17sylancl 588 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
19 supxrub 12720 . . . . . . . 8 ((ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
2015, 18, 19syl2anc 586 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
21 0xr 10690 . . . . . . . 8 0 ∈ ℝ*
2214, 9sseldi 3967 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ*)
23 supxrcl 12711 . . . . . . . . 9 (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2415, 23syl 17 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
25 xrletr 12554 . . . . . . . 8 ((0 ∈ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ* ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2621, 22, 24, 25mp3an2i 1462 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2712, 20, 26mp2and 697 . . . . . 6 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
283, 27sylbi 219 . . . . 5 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
29 breq2 5072 . . . . 5 (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (0 ≤ 𝐵 ↔ 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3028, 29syl5ibrcom 249 . . . 4 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → 0 ≤ 𝐵))
3130adantld 493 . . 3 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ 𝐵))
3231rexlimiv 3282 . 2 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ 𝐵)
332, 32sylbi 219 1 (𝐵𝑀 → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3141  {crab 3144  cin 3937  wss 3938   cuni 4840   class class class wbr 5068   × cxp 5555  ran crn 5558  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  supcsup 8906  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  cmin 10872  cn 11640  (,)cioo 12741  [,)cico 12743  seqcseq 13372  abscabs 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  ovolge0  24084
  Copyright terms: Public domain W3C validator