MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolre Structured version   Visualization version   GIF version

Theorem ovolre 23493
Description: The measure of the real numbers. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
ovolre (vol*‘ℝ) = +∞

Proof of Theorem ovolre
StepHypRef Expression
1 ssid 3765 . . . 4 ℝ ⊆ ℝ
2 ovolcl 23446 . . . 4 (ℝ ⊆ ℝ → (vol*‘ℝ) ∈ ℝ*)
31, 2ax-mp 5 . . 3 (vol*‘ℝ) ∈ ℝ*
4 pnfge 12157 . . 3 ((vol*‘ℝ) ∈ ℝ* → (vol*‘ℝ) ≤ +∞)
53, 4ax-mp 5 . 2 (vol*‘ℝ) ≤ +∞
6 0re 10232 . . . 4 0 ∈ ℝ
7 ovolicopnf 23492 . . . 4 (0 ∈ ℝ → (vol*‘(0[,)+∞)) = +∞)
86, 7ax-mp 5 . . 3 (vol*‘(0[,)+∞)) = +∞
9 rge0ssre 12473 . . . 4 (0[,)+∞) ⊆ ℝ
10 ovolss 23453 . . . 4 (((0[,)+∞) ⊆ ℝ ∧ ℝ ⊆ ℝ) → (vol*‘(0[,)+∞)) ≤ (vol*‘ℝ))
119, 1, 10mp2an 710 . . 3 (vol*‘(0[,)+∞)) ≤ (vol*‘ℝ)
128, 11eqbrtrri 4827 . 2 +∞ ≤ (vol*‘ℝ)
13 pnfxr 10284 . . 3 +∞ ∈ ℝ*
14 xrletri3 12178 . . 3 (((vol*‘ℝ) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘ℝ) = +∞ ↔ ((vol*‘ℝ) ≤ +∞ ∧ +∞ ≤ (vol*‘ℝ))))
153, 13, 14mp2an 710 . 2 ((vol*‘ℝ) = +∞ ↔ ((vol*‘ℝ) ≤ +∞ ∧ +∞ ≤ (vol*‘ℝ)))
165, 12, 15mpbir2an 993 1 (vol*‘ℝ) = +∞
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wcel 2139  wss 3715   class class class wbr 4804  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  +∞cpnf 10263  *cxr 10265  cle 10267  [,)cico 12370  vol*covol 23431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-rest 16285  df-topgen 16306  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-top 20901  df-topon 20918  df-bases 20952  df-cmp 21392  df-ovol 23433
This theorem is referenced by:  i1f0rn  23648  ovoliunnfl  33764  voliunnfl  33766  volsupnfl  33767
  Copyright terms: Public domain W3C validator