MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem2 Structured version   Visualization version   GIF version

Theorem ovolshftlem2 23029
Description: Lemma for ovolshft 23030. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
ovolshft.4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolshftlem2 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑦,𝑧   𝑔,𝑀,𝑧   𝜑,𝑓,𝑔,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑀(𝑥,𝑦,𝑓)

Proof of Theorem ovolshftlem2
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolshft.1 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
21ad3antrrr 761 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ℝ)
3 ovolshft.2 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
43ad3antrrr 761 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐶 ∈ ℝ)
5 ovolshft.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
65ad3antrrr 761 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
7 ovolshft.4 . . . . . . 7 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
8 eqid 2609 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔))
9 fveq2 6087 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
109fveq2d 6091 . . . . . . . . . 10 (𝑚 = 𝑛 → (1st ‘(𝑔𝑚)) = (1st ‘(𝑔𝑛)))
1110oveq1d 6541 . . . . . . . . 9 (𝑚 = 𝑛 → ((1st ‘(𝑔𝑚)) + 𝐶) = ((1st ‘(𝑔𝑛)) + 𝐶))
129fveq2d 6091 . . . . . . . . . 10 (𝑚 = 𝑛 → (2nd ‘(𝑔𝑚)) = (2nd ‘(𝑔𝑛)))
1312oveq1d 6541 . . . . . . . . 9 (𝑚 = 𝑛 → ((2nd ‘(𝑔𝑚)) + 𝐶) = ((2nd ‘(𝑔𝑛)) + 𝐶))
1411, 13opeq12d 4342 . . . . . . . 8 (𝑚 = 𝑛 → ⟨((1st ‘(𝑔𝑚)) + 𝐶), ((2nd ‘(𝑔𝑚)) + 𝐶)⟩ = ⟨((1st ‘(𝑔𝑛)) + 𝐶), ((2nd ‘(𝑔𝑛)) + 𝐶)⟩)
1514cbvmptv 4672 . . . . . . 7 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑔𝑚)) + 𝐶), ((2nd ‘(𝑔𝑚)) + 𝐶)⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑔𝑛)) + 𝐶), ((2nd ‘(𝑔𝑛)) + 𝐶)⟩)
16 simplr 787 . . . . . . . 8 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
17 reex 9883 . . . . . . . . . . 11 ℝ ∈ V
1817, 17xpex 6837 . . . . . . . . . 10 (ℝ × ℝ) ∈ V
1918inex2 4722 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ∈ V
20 nnex 10875 . . . . . . . . 9 ℕ ∈ V
2119, 20elmap 7749 . . . . . . . 8 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2216, 21sylib 206 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
23 simpr 475 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐴 ran ((,) ∘ 𝑔))
242, 4, 6, 7, 8, 15, 22, 23ovolshftlem1 23028 . . . . . 6 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀)
25 eleq1a 2682 . . . . . 6 (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧𝑀))
2624, 25syl 17 . . . . 5 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧𝑀))
2726expimpd 626 . . . 4 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2827rexlimdva 3012 . . 3 ((𝜑𝑧 ∈ ℝ*) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2928ralrimiva 2948 . 2 (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
30 rabss 3641 . 2 ({𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀 ↔ ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
3129, 30sylibr 222 1 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2895  wrex 2896  {crab 2899  cin 3538  wss 3539  cop 4130   cuni 4366  cmpt 4637   × cxp 5025  ran crn 5028  ccom 5031  wf 5785  cfv 5789  (class class class)co 6526  1st c1st 7034  2nd c2nd 7035  𝑚 cmap 7721  supcsup 8206  cr 9791  1c1 9793   + caddc 9795  *cxr 9929   < clt 9930  cle 9931  cmin 10117  cn 10869  (,)cioo 12004  seqcseq 12620  abscabs 13770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-rp 11667  df-ioo 12008  df-ico 12010  df-fz 12155  df-seq 12621  df-exp 12680  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772
This theorem is referenced by:  ovolshft  23030
  Copyright terms: Public domain W3C validator