MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolsslem Structured version   Visualization version   GIF version

Theorem ovolsslem 24087
Description: Lemma for ovolss 24088. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.)
Hypotheses
Ref Expression
ovolss.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
ovolss.2 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolsslem ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵))
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)   𝑁(𝑦,𝑓)

Proof of Theorem ovolsslem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3976 . . . . . . . . 9 (𝐴𝐵 → (𝐵 ran ((,) ∘ 𝑓) → 𝐴 ran ((,) ∘ 𝑓)))
21ad2antrr 724 . . . . . . . 8 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (𝐵 ran ((,) ∘ 𝑓) → 𝐴 ran ((,) ∘ 𝑓)))
32anim1d 612 . . . . . . 7 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
43reximdv 3275 . . . . . 6 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
54ss2rabdv 4054 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ) → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))})
6 ovolss.2 . . . . 5 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
7 ovolss.1 . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
85, 6, 73sstr4g 4014 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → 𝑁𝑀)
9 sstr 3977 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ)
107ovolval 24076 . . . . . . . 8 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
1110adantr 483 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
127ssrab3 4059 . . . . . . . . 9 𝑀 ⊆ ℝ*
13 infxrlb 12730 . . . . . . . . 9 ((𝑀 ⊆ ℝ*𝑥𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1412, 13mpan 688 . . . . . . . 8 (𝑥𝑀 → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1514adantl 484 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1611, 15eqbrtrd 5090 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → (vol*‘𝐴) ≤ 𝑥)
1716ralrimiva 3184 . . . . 5 (𝐴 ⊆ ℝ → ∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥)
189, 17syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → ∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥)
19 ssralv 4035 . . . 4 (𝑁𝑀 → (∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥 → ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
208, 18, 19sylc 65 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ) → ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥)
216ssrab3 4059 . . . 4 𝑁 ⊆ ℝ*
22 ovolcl 24081 . . . . 5 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
239, 22syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ∈ ℝ*)
24 infxrgelb 12731 . . . 4 ((𝑁 ⊆ ℝ* ∧ (vol*‘𝐴) ∈ ℝ*) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
2521, 23, 24sylancr 589 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
2620, 25mpbird 259 . 2 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ))
276ovolval 24076 . . 3 (𝐵 ⊆ ℝ → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
2827adantl 484 . 2 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
2926, 28breqtrrd 5096 1 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  cin 3937  wss 3938   cuni 4840   class class class wbr 5068   × cxp 5555  ran crn 5558  ccom 5561  cfv 6357  (class class class)co 7158  m cmap 8408  supcsup 8906  infcinf 8907  cr 10538  1c1 10540   + caddc 10542  *cxr 10676   < clt 10677  cle 10678  cmin 10872  cn 11640  (,)cioo 12741  seqcseq 13372  abscabs 14595  vol*covol 24065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-ovol 24067
This theorem is referenced by:  ovolss  24088
  Copyright terms: Public domain W3C validator