Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval2 Structured version   Visualization version   GIF version

Theorem ovolval2 41179
 Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. See ovolval 23288 for an alternative expression. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval2.a (𝜑𝐴 ⊆ ℝ)
ovolval2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval2 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝜑,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)

Proof of Theorem ovolval2
StepHypRef Expression
1 ovolval2.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 eqid 2651 . . . 4 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
32ovolval 23288 . . 3 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
41, 3syl 17 . 2 (𝜑 → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
52a1i 11 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))})
6 reex 10065 . . . . . . . . . . . . . . 15 ℝ ∈ V
76, 6xpex 7004 . . . . . . . . . . . . . 14 (ℝ × ℝ) ∈ V
8 inss2 3867 . . . . . . . . . . . . . 14 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
9 mapss 7942 . . . . . . . . . . . . . 14 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ⊆ ((ℝ × ℝ) ↑𝑚 ℕ))
107, 8, 9mp2an 708 . . . . . . . . . . . . 13 (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ⊆ ((ℝ × ℝ) ↑𝑚 ℕ)
1110sseli 3632 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
12 1zzd 11446 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 1 ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 1 ∈ ℤ)
1413adantl 481 . . . . . . . . . 10 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → 1 ∈ ℤ)
15 nnuz 11761 . . . . . . . . . 10 ℕ = (ℤ‘1)
16 absfico 39724 . . . . . . . . . . . . . 14 abs:ℂ⟶(0[,)+∞)
17 subf 10321 . . . . . . . . . . . . . 14 − :(ℂ × ℂ)⟶ℂ
18 fco 6096 . . . . . . . . . . . . . 14 ((abs:ℂ⟶(0[,)+∞) ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶(0[,)+∞))
1916, 17, 18mp2an 708 . . . . . . . . . . . . 13 (abs ∘ − ):(ℂ × ℂ)⟶(0[,)+∞)
2019a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → (abs ∘ − ):(ℂ × ℂ)⟶(0[,)+∞))
21 rr2sscn2 39895 . . . . . . . . . . . . 13 (ℝ × ℝ) ⊆ (ℂ × ℂ)
2221a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
23 elmapi 7921 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
2411, 23syl 17 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
2520, 22, 24fcoss 39716 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → ((abs ∘ − ) ∘ 𝑓):ℕ⟶(0[,)+∞))
2625adantl 481 . . . . . . . . . 10 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((abs ∘ − ) ∘ 𝑓):ℕ⟶(0[,)+∞))
27 eqid 2651 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
2814, 15, 26, 27sge0seq 40981 . . . . . . . . 9 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → (Σ^‘((abs ∘ − ) ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
2928eqcomd 2657 . . . . . . . 8 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) = (Σ^‘((abs ∘ − ) ∘ 𝑓)))
3029eqeq2d 2661 . . . . . . 7 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓))))
3130anbi2d 740 . . . . . 6 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))))
3231rexbidva 3078 . . . . 5 (𝜑 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))))
3332rabbidv 3220 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))})
34 ovolval2.m . . . . . 6 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}
3534eqcomi 2660 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀
3635a1i 11 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀)
375, 33, 363eqtrd 2689 . . 3 (𝜑 → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = 𝑀)
3837infeq1d 8424 . 2 (𝜑 → inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) = inf(𝑀, ℝ*, < ))
394, 38eqtrd 2685 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∃wrex 2942  {crab 2945  Vcvv 3231   ∩ cin 3606   ⊆ wss 3607  ∪ cuni 4468   × cxp 5141  ran crn 5144   ∘ ccom 5147  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  supcsup 8387  infcinf 8388  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304  ℕcn 11058  ℤcz 11415  (,)cioo 12213  [,)cico 12215  seqcseq 12841  abscabs 14018  vol*covol 23277  Σ^csumge0 40897 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-ovol 23279  df-sumge0 40898 This theorem is referenced by:  ovolval3  41182
 Copyright terms: Public domain W3C validator