Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval3 Structured version   Visualization version   GIF version

Theorem ovolval3 42923
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^ and vol ∘ (,). See ovolval 24068 and ovolval2 42920 for alternative expressions. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval3.a (𝜑𝐴 ⊆ ℝ)
ovolval3.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval3 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝜑,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)

Proof of Theorem ovolval3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ovolval3.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 eqid 2821 . . 3 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}
31, 2ovolval2 42920 . 2 (𝜑 → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, < ))
4 ovolval3.m . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
5 reex 10622 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ∈ V
65, 5xpex 7470 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ × ℝ) ∈ V
7 inss2 4205 . . . . . . . . . . . . . . . . . . . . . 22 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
8 mapss 8447 . . . . . . . . . . . . . . . . . . . . . 22 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ))
96, 7, 8mp2an 690 . . . . . . . . . . . . . . . . . . . . 21 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ)
109sseli 3962 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓 ∈ ((ℝ × ℝ) ↑m ℕ))
11 elmapi 8422 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1210, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1312ffvelrnda 6845 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ × ℝ))
14 1st2nd2 7722 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑛) ∈ (ℝ × ℝ) → (𝑓𝑛) = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
1615fveq2d 6668 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝑓𝑛)) = ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩))
17 df-ov 7153 . . . . . . . . . . . . . . . . . 18 ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) = ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
1817eqcomi 2830 . . . . . . . . . . . . . . . . 17 ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))
1918a1i 11 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))))
2016, 19eqtrd 2856 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝑓𝑛)) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))))
2120fveq2d 6668 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (vol‘((,)‘(𝑓𝑛))) = (vol‘((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))))
22 xp1st 7715 . . . . . . . . . . . . . . . 16 ((𝑓𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
2313, 22syl 17 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
24 xp2nd 7716 . . . . . . . . . . . . . . . 16 ((𝑓𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2513, 24syl 17 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
26 elmapi 8422 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2726adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
28 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
29 ovolfcl 24061 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛)) ∈ ℝ ∧ (2nd ‘(𝑓𝑛)) ∈ ℝ ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
3027, 28, 29syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛)) ∈ ℝ ∧ (2nd ‘(𝑓𝑛)) ∈ ℝ ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
3130simp3d 1140 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)))
32 volioo 24164 . . . . . . . . . . . . . . 15 (((1st ‘(𝑓𝑛)) ∈ ℝ ∧ (2nd ‘(𝑓𝑛)) ∈ ℝ ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → (vol‘((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
3323, 25, 31, 32syl3anc 1367 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (vol‘((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
3421, 33eqtrd 2856 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (vol‘((,)‘(𝑓𝑛))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
35 ioof 12829 . . . . . . . . . . . . . . . 16 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
36 ffun 6511 . . . . . . . . . . . . . . . 16 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
3735, 36ax-mp 5 . . . . . . . . . . . . . . 15 Fun (,)
3837a1i 11 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → Fun (,))
39 rexpssxrxp 10680 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4039, 13sseldi 3964 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ* × ℝ*))
4135fdmi 6518 . . . . . . . . . . . . . . . . 17 dom (,) = (ℝ* × ℝ*)
4241eqcomi 2830 . . . . . . . . . . . . . . . 16 (ℝ* × ℝ*) = dom (,)
4342a1i 11 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (ℝ* × ℝ*) = dom (,))
4440, 43eleqtrd 2915 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ dom (,))
45 fvco 6753 . . . . . . . . . . . . . 14 ((Fun (,) ∧ (𝑓𝑛) ∈ dom (,)) → ((vol ∘ (,))‘(𝑓𝑛)) = (vol‘((,)‘(𝑓𝑛))))
4638, 44, 45syl2anc 586 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((vol ∘ (,))‘(𝑓𝑛)) = (vol‘((,)‘(𝑓𝑛))))
4715fveq2d 6668 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ − )‘(𝑓𝑛)) = ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩))
48 df-ov 7153 . . . . . . . . . . . . . . . 16 ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
4948eqcomi 2830 . . . . . . . . . . . . . . 15 ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛)))
5049a1i 11 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))))
5123recnd 10663 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℂ)
5225recnd 10663 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℂ)
53 eqid 2821 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) = (abs ∘ − )
5453cnmetdval 23373 . . . . . . . . . . . . . . . 16 (((1st ‘(𝑓𝑛)) ∈ ℂ ∧ (2nd ‘(𝑓𝑛)) ∈ ℂ) → ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))))
5551, 52, 54syl2anc 586 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))))
56 abssub 14680 . . . . . . . . . . . . . . . 16 (((1st ‘(𝑓𝑛)) ∈ ℂ ∧ (2nd ‘(𝑓𝑛)) ∈ ℂ) → (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))) = (abs‘((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛)))))
5751, 52, 56syl2anc 586 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))) = (abs‘((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛)))))
5823, 25, 31abssubge0d 14785 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (abs‘((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛)))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
5955, 57, 583eqtrd 2860 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
6047, 50, 593eqtrd 2860 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ − )‘(𝑓𝑛)) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
6134, 46, 603eqtr4d 2866 . . . . . . . . . . . 12 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((vol ∘ (,))‘(𝑓𝑛)) = ((abs ∘ − )‘(𝑓𝑛)))
6261mpteq2dva 5153 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝑛 ∈ ℕ ↦ ((vol ∘ (,))‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ ((abs ∘ − )‘(𝑓𝑛))))
63 volioof 42266 . . . . . . . . . . . . 13 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
6463a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
6539a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
6612, 65fssd 6522 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
67 fcompt 6889 . . . . . . . . . . . 12 (((vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((vol ∘ (,)) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((vol ∘ (,))‘(𝑓𝑛))))
6864, 66, 67syl2anc 586 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((vol ∘ (,))‘(𝑓𝑛))))
69 absf 14691 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
70 subf 10882 . . . . . . . . . . . . . 14 − :(ℂ × ℂ)⟶ℂ
71 fco 6525 . . . . . . . . . . . . . 14 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
7269, 70, 71mp2an 690 . . . . . . . . . . . . 13 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
7372a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
74 rr2sscn2 41627 . . . . . . . . . . . . . 14 (ℝ × ℝ) ⊆ (ℂ × ℂ)
7574a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
7612, 75fssd 6522 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℂ × ℂ))
77 fcompt 6889 . . . . . . . . . . . 12 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝑓:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((abs ∘ − )‘(𝑓𝑛))))
7873, 76, 77syl2anc 586 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((abs ∘ − ) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((abs ∘ − )‘(𝑓𝑛))))
7962, 68, 783eqtr4d 2866 . . . . . . . . . 10 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓))
8079fveq2d 6668 . . . . . . . . 9 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((abs ∘ − ) ∘ 𝑓)))
8180eqeq2d 2832 . . . . . . . 8 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓))))
8281anbi2d 630 . . . . . . 7 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))))
8382rexbiia 3246 . . . . . 6 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓))))
8483rabbii 3473 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}
854, 84eqtr2i 2845 . . . 4 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀
8685infeq1i 8936 . . 3 inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, < ) = inf(𝑀, ℝ*, < )
8786a1i 11 . 2 (𝜑 → inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, < ) = inf(𝑀, ℝ*, < ))
883, 87eqtrd 2856 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  cin 3934  wss 3935  𝒫 cpw 4538  cop 4566   cuni 4831   class class class wbr 5058  cmpt 5138   × cxp 5547  dom cdm 5549  ran crn 5550  ccom 5553  Fun wfun 6343  wf 6345  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  m cmap 8400  infcinf 8899  cc 10529  cr 10530  0cc0 10531  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  cmin 10864  cn 11632  (,)cioo 12732  [,]cicc 12735  abscabs 14587  vol*covol 24057  volcvol 24058  Σ^csumge0 42638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060  df-sumge0 42639
This theorem is referenced by:  ovolval4lem2  42926
  Copyright terms: Public domain W3C validator