MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p1evtxdeq Structured version   Visualization version   GIF version

Theorem p1evtxdeq 27298
Description: If an edge 𝐸 which does not contain vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is the same in both graphs. (Contributed by AV, 2-Mar-2021.)
Hypotheses
Ref Expression
p1evtxdeq.v 𝑉 = (Vtx‘𝐺)
p1evtxdeq.i 𝐼 = (iEdg‘𝐺)
p1evtxdeq.f (𝜑 → Fun 𝐼)
p1evtxdeq.fv (𝜑 → (Vtx‘𝐹) = 𝑉)
p1evtxdeq.fi (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {⟨𝐾, 𝐸⟩}))
p1evtxdeq.k (𝜑𝐾𝑋)
p1evtxdeq.d (𝜑𝐾 ∉ dom 𝐼)
p1evtxdeq.u (𝜑𝑈𝑉)
p1evtxdeq.e (𝜑𝐸𝑌)
p1evtxdeq.n (𝜑𝑈𝐸)
Assertion
Ref Expression
p1evtxdeq (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈))

Proof of Theorem p1evtxdeq
StepHypRef Expression
1 p1evtxdeq.v . . 3 𝑉 = (Vtx‘𝐺)
2 p1evtxdeq.i . . 3 𝐼 = (iEdg‘𝐺)
3 p1evtxdeq.f . . 3 (𝜑 → Fun 𝐼)
4 p1evtxdeq.fv . . 3 (𝜑 → (Vtx‘𝐹) = 𝑉)
5 p1evtxdeq.fi . . 3 (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {⟨𝐾, 𝐸⟩}))
6 p1evtxdeq.k . . 3 (𝜑𝐾𝑋)
7 p1evtxdeq.d . . 3 (𝜑𝐾 ∉ dom 𝐼)
8 p1evtxdeq.u . . 3 (𝜑𝑈𝑉)
9 p1evtxdeq.e . . 3 (𝜑𝐸𝑌)
101, 2, 3, 4, 5, 6, 7, 8, 9p1evtxdeqlem 27297 . 2 (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈)))
111fvexi 6687 . . . . . 6 𝑉 ∈ V
12 snex 5335 . . . . . 6 {⟨𝐾, 𝐸⟩} ∈ V
1311, 12pm3.2i 473 . . . . 5 (𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V)
14 opiedgfv 26795 . . . . 5 ((𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = {⟨𝐾, 𝐸⟩})
1513, 14mp1i 13 . . . 4 (𝜑 → (iEdg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = {⟨𝐾, 𝐸⟩})
16 opvtxfv 26792 . . . . 5 ((𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V) → (Vtx‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = 𝑉)
1713, 16mp1i 13 . . . 4 (𝜑 → (Vtx‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = 𝑉)
18 p1evtxdeq.n . . . 4 (𝜑𝑈𝐸)
1915, 17, 6, 8, 9, 181hevtxdg0 27290 . . 3 (𝜑 → ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈) = 0)
2019oveq2d 7175 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈)) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 0))
211vtxdgelxnn0 27257 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0*)
22 xnn0xr 11975 . . . 4 (((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0* → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*)
238, 21, 223syl 18 . . 3 (𝜑 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*)
2423xaddid1d 12639 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 0) = ((VtxDeg‘𝐺)‘𝑈))
2510, 20, 243eqtrd 2863 1 (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wnel 3126  Vcvv 3497  cun 3937  {csn 4570  cop 4576  dom cdm 5558  Fun wfun 6352  cfv 6358  (class class class)co 7159  0cc0 10540  *cxr 10677  0*cxnn0 11970   +𝑒 cxad 12508  Vtxcvtx 26784  iEdgciedg 26785  VtxDegcvtxdg 27250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-xadd 12511  df-fz 12896  df-hash 13694  df-vtx 26786  df-iedg 26787  df-vtxdg 27251
This theorem is referenced by:  vdegp1ai  27321
  Copyright terms: Public domain W3C validator