Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padct Structured version   Visualization version   GIF version

Theorem padct 30382
Description: Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.)
Assertion
Ref Expression
padct ((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝑉   𝑓,𝑍

Proof of Theorem padct
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 8528 . 2 (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
2 nfv 1906 . . . . . 6 𝑔(𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴)
3 nfv 1906 . . . . . 6 𝑔𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))
4 isfinite2 8765 . . . . . . . . . 10 (𝐴 ≺ ω → 𝐴 ∈ Fin)
5 isfinite4 13713 . . . . . . . . . 10 (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴)
64, 5sylib 219 . . . . . . . . 9 (𝐴 ≺ ω → (1...(♯‘𝐴)) ≈ 𝐴)
76adantr 481 . . . . . . . 8 ((𝐴 ≺ ω ∧ 𝑍𝑉) → (1...(♯‘𝐴)) ≈ 𝐴)
8 bren 8507 . . . . . . . 8 ((1...(♯‘𝐴)) ≈ 𝐴 ↔ ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
97, 8sylib 219 . . . . . . 7 ((𝐴 ≺ ω ∧ 𝑍𝑉) → ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
1093adant3 1124 . . . . . 6 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
11 f1of 6609 . . . . . . . . . . . 12 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔:(1...(♯‘𝐴))⟶𝐴)
1211adantl 482 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑔:(1...(♯‘𝐴))⟶𝐴)
13 fconstmpt 5608 . . . . . . . . . . . . 13 ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍}) = (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)
1413eqcomi 2830 . . . . . . . . . . . 12 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})
15 simplr 765 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑍𝑉)
16 fconst2g 6958 . . . . . . . . . . . . 13 (𝑍𝑉 → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍} ↔ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})))
1715, 16syl 17 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍} ↔ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})))
1814, 17mpbiri 259 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍})
19 disjdif 4419 . . . . . . . . . . . 12 ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅
2019a1i 11 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅)
21 fun 6534 . . . . . . . . . . 11 (((𝑔:(1...(♯‘𝐴))⟶𝐴 ∧ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍}) ∧ ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}))
2212, 18, 20, 21syl21anc 833 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}))
23 fz1ssnn 12928 . . . . . . . . . . . 12 (1...(♯‘𝐴)) ⊆ ℕ
24 undif 4428 . . . . . . . . . . . 12 ((1...(♯‘𝐴)) ⊆ ℕ ↔ ((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴)))) = ℕ)
2523, 24mpbi 231 . . . . . . . . . . 11 ((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴)))) = ℕ
2625feq2i 6500 . . . . . . . . . 10 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}) ↔ (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
2722, 26sylib 219 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
28273adantl3 1160 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
29 ssid 3988 . . . . . . . . . . . . 13 𝐴𝐴
30 simpr 485 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
31 f1ofo 6616 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔:(1...(♯‘𝐴))–onto𝐴)
32 forn 6587 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–onto𝐴 → ran 𝑔 = 𝐴)
3330, 31, 323syl 18 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ran 𝑔 = 𝐴)
3429, 33sseqtrrid 4019 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran 𝑔)
3534orcd 869 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐴 ⊆ ran 𝑔𝐴 ⊆ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
36 ssun 4164 . . . . . . . . . . 11 ((𝐴 ⊆ ran 𝑔𝐴 ⊆ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝐴 ⊆ (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
3735, 36syl 17 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
38 rnun 5998 . . . . . . . . . 10 ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) = (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))
3937, 38sseqtrrdi 4017 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
40393adantl3 1160 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
41 dff1o3 6615 . . . . . . . . . . 11 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑔:(1...(♯‘𝐴))–onto𝐴 ∧ Fun 𝑔))
4241simprbi 497 . . . . . . . . . 10 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → Fun 𝑔)
4342adantl 482 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → Fun 𝑔)
44 cnvun 5995 . . . . . . . . . . . . 13 (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) = (𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))
4544reseq1i 5843 . . . . . . . . . . . 12 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)
46 resundir 5862 . . . . . . . . . . . 12 ((𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴))
4745, 46eqtri 2844 . . . . . . . . . . 11 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴))
48 dff1o4 6617 . . . . . . . . . . . . . . . 16 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑔 Fn (1...(♯‘𝐴)) ∧ 𝑔 Fn 𝐴))
4948simprbi 497 . . . . . . . . . . . . . . 15 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔 Fn 𝐴)
50 fnresdm 6460 . . . . . . . . . . . . . . 15 (𝑔 Fn 𝐴 → (𝑔𝐴) = 𝑔)
5149, 50syl 17 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑔𝐴) = 𝑔)
5251adantl 482 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔𝐴) = 𝑔)
53 simpl3 1185 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ¬ 𝑍𝐴)
5414cnveqi 5739 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})
55 cnvxp 6008 . . . . . . . . . . . . . . . . 17 ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍}) = ({𝑍} × (ℕ ∖ (1...(♯‘𝐴))))
5654, 55eqtri 2844 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ({𝑍} × (ℕ ∖ (1...(♯‘𝐴))))
5756reseq1i 5843 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴)
58 incom 4177 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ {𝑍}) = ({𝑍} ∩ 𝐴)
59 disjsn 4641 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ {𝑍}) = ∅ ↔ ¬ 𝑍𝐴)
6059biimpri 229 . . . . . . . . . . . . . . . . 17 𝑍𝐴 → (𝐴 ∩ {𝑍}) = ∅)
6158, 60syl5eqr 2870 . . . . . . . . . . . . . . . 16 𝑍𝐴 → ({𝑍} ∩ 𝐴) = ∅)
62 xpdisjres 30277 . . . . . . . . . . . . . . . 16 (({𝑍} ∩ 𝐴) = ∅ → (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴) = ∅)
6361, 62syl 17 . . . . . . . . . . . . . . 15 𝑍𝐴 → (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴) = ∅)
6457, 63syl5eq 2868 . . . . . . . . . . . . . 14 𝑍𝐴 → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = ∅)
6553, 64syl 17 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = ∅)
6652, 65uneq12d 4139 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴)) = (𝑔 ∪ ∅))
67 un0 4343 . . . . . . . . . . . 12 (𝑔 ∪ ∅) = 𝑔
6866, 67syl6eq 2872 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴)) = 𝑔)
6947, 68syl5eq 2868 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = 𝑔)
7069funeqd 6371 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) ↔ Fun 𝑔))
7143, 70mpbird 258 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))
72 vex 3498 . . . . . . . . . 10 𝑔 ∈ V
73 nnex 11633 . . . . . . . . . . . 12 ℕ ∈ V
74 difexg 5223 . . . . . . . . . . . 12 (ℕ ∈ V → (ℕ ∖ (1...(♯‘𝐴))) ∈ V)
7573, 74ax-mp 5 . . . . . . . . . . 11 (ℕ ∖ (1...(♯‘𝐴))) ∈ V
7675mptex 6978 . . . . . . . . . 10 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ∈ V
7772, 76unex 7457 . . . . . . . . 9 (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∈ V
78 feq1 6489 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ↔ (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍})))
79 rneq 5800 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → ran 𝑓 = ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
8079sseq2d 3998 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝐴 ⊆ ran 𝑓𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))))
81 cnveq 5738 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
82 eqidd 2822 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝐴 = 𝐴)
8381, 82reseq12d 5848 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝑓𝐴) = ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))
8483funeqd 6371 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (Fun (𝑓𝐴) ↔ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)))
8578, 80, 843anbi123d 1427 . . . . . . . . 9 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → ((𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)) ↔ ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∧ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))))
8677, 85spcev 3606 . . . . . . . 8 (((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∧ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8728, 40, 71, 86syl3anc 1363 . . . . . . 7 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8887ex 413 . . . . . 6 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
892, 3, 10, 88exlimimdd 2210 . . . . 5 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
90893expia 1113 . . . 4 ((𝐴 ≺ ω ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
91 nnenom 13338 . . . . . . . 8 ℕ ≈ ω
92 simpl 483 . . . . . . . . 9 ((𝐴 ≈ ω ∧ 𝑍𝑉) → 𝐴 ≈ ω)
9392ensymd 8549 . . . . . . . 8 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ω ≈ 𝐴)
94 entr 8550 . . . . . . . 8 ((ℕ ≈ ω ∧ ω ≈ 𝐴) → ℕ ≈ 𝐴)
9591, 93, 94sylancr 587 . . . . . . 7 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ℕ ≈ 𝐴)
96 bren 8507 . . . . . . 7 (ℕ ≈ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
9795, 96sylib 219 . . . . . 6 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
98 nfv 1906 . . . . . . 7 𝑓(𝐴 ≈ ω ∧ 𝑍𝑉)
99 simpr 485 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ–1-1-onto𝐴)
100 f1of 6609 . . . . . . . . . 10 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ⟶𝐴)
101 ssun1 4147 . . . . . . . . . . 11 𝐴 ⊆ (𝐴 ∪ {𝑍})
102 fss 6521 . . . . . . . . . . 11 ((𝑓:ℕ⟶𝐴𝐴 ⊆ (𝐴 ∪ {𝑍})) → 𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
103101, 102mpan2 687 . . . . . . . . . 10 (𝑓:ℕ⟶𝐴𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
10499, 100, 1033syl 18 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
105 f1ofo 6616 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ–onto𝐴)
106 forn 6587 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
10799, 105, 1063syl 18 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → ran 𝑓 = 𝐴)
10829, 107sseqtrrid 4019 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝐴 ⊆ ran 𝑓)
109 f1ocnv 6621 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝐴𝑓:𝐴1-1-onto→ℕ)
110 f1of1 6608 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto→ℕ → 𝑓:𝐴1-1→ℕ)
11199, 109, 1103syl 18 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:𝐴1-1→ℕ)
112 f1ores 6623 . . . . . . . . . . 11 ((𝑓:𝐴1-1→ℕ ∧ 𝐴𝐴) → (𝑓𝐴):𝐴1-1-onto→(𝑓𝐴))
11329, 112mpan2 687 . . . . . . . . . 10 (𝑓:𝐴1-1→ℕ → (𝑓𝐴):𝐴1-1-onto→(𝑓𝐴))
114 f1ofun 6611 . . . . . . . . . 10 ((𝑓𝐴):𝐴1-1-onto→(𝑓𝐴) → Fun (𝑓𝐴))
115111, 113, 1143syl 18 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → Fun (𝑓𝐴))
116104, 108, 1153jca 1120 . . . . . . . 8 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
117116ex 413 . . . . . . 7 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (𝑓:ℕ–1-1-onto𝐴 → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
11898, 117eximd 2207 . . . . . 6 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
11997, 118mpd 15 . . . . 5 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
120119a1d 25 . . . 4 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
12190, 120jaoian 950 . . 3 (((𝐴 ≺ ω ∨ 𝐴 ≈ ω) ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
1221213impia 1109 . 2 (((𝐴 ≺ ω ∨ 𝐴 ≈ ω) ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
1231, 122syl3an1b 1395 1 ((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wex 1771  wcel 2105  Vcvv 3495  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  {csn 4559   class class class wbr 5058  cmpt 5138   × cxp 5547  ccnv 5548  ran crn 5550  cres 5551  cima 5552  Fun wfun 6343   Fn wfn 6344  wf 6345  1-1wf1 6346  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7145  ωcom 7568  cen 8495  cdom 8496  csdm 8497  Fincfn 8498  1c1 10527  cn 11627  ...cfz 12882  chash 13680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-hash 13681
This theorem is referenced by:  carsggect  31476
  Copyright terms: Public domain W3C validator