Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padd01 Structured version   Visualization version   GIF version

Theorem padd01 33918
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
padd01 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = 𝑋)

Proof of Theorem padd01
StepHypRef Expression
1 simpl 471 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝐾𝐵)
2 simpr 475 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝑋𝐴)
3 0ss 3923 . . . . 5 ∅ ⊆ 𝐴
43a1i 11 . . . 4 ((𝐾𝐵𝑋𝐴) → ∅ ⊆ 𝐴)
51, 2, 43jca 1234 . . 3 ((𝐾𝐵𝑋𝐴) → (𝐾𝐵𝑋𝐴 ∧ ∅ ⊆ 𝐴))
6 neirr 2790 . . . 4 ¬ ∅ ≠ ∅
76intnan 950 . . 3 ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)
8 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
9 padd0.p . . . 4 + = (+𝑃𝐾)
108, 9paddval0 33917 . . 3 (((𝐾𝐵𝑋𝐴 ∧ ∅ ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)) → (𝑋 + ∅) = (𝑋 ∪ ∅))
115, 7, 10sylancl 692 . 2 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = (𝑋 ∪ ∅))
12 un0 3918 . 2 (𝑋 ∪ ∅) = 𝑋
1311, 12syl6eq 2659 1 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  cun 3537  wss 3539  c0 3873  cfv 5790  (class class class)co 6527  Atomscatm 33371  +𝑃cpadd 33902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-padd 33903
This theorem is referenced by:  paddasslem17  33943  pmodlem2  33954
  Copyright terms: Public domain W3C validator