Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem16 Structured version   Visualization version   GIF version

Theorem paddasslem16 33937
Description: Lemma for paddass 33940. Use elpaddn0 33902 to eliminate 𝑥 and 𝑟 from paddasslem15 33936. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
paddasslem.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddasslem16 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))

Proof of Theorem paddasslem16
Dummy variables 𝑝 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 33466 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1074 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → 𝐾 ∈ Lat)
3 simp21 1086 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → 𝑋𝐴)
4 simp1 1053 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → 𝐾 ∈ HL)
5 simp22 1087 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → 𝑌𝐴)
6 simp23 1088 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → 𝑍𝐴)
7 paddasslem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
8 paddasslem.p . . . . . 6 + = (+𝑃𝐾)
97, 8paddssat 33916 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑍𝐴) → (𝑌 + 𝑍) ⊆ 𝐴)
104, 5, 6, 9syl3anc 1317 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑌 + 𝑍) ⊆ 𝐴)
11 simp3l 1081 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅))
12 paddasslem.l . . . . 5 = (le‘𝐾)
13 paddasslem.j . . . . 5 = (join‘𝐾)
1412, 13, 7, 8elpaddn0 33902 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ (𝑌 + 𝑍) ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅)) → (𝑝 ∈ (𝑋 + (𝑌 + 𝑍)) ↔ (𝑝𝐴 ∧ ∃𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)𝑝 (𝑥 𝑟))))
152, 3, 10, 11, 14syl31anc 1320 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑝 ∈ (𝑋 + (𝑌 + 𝑍)) ↔ (𝑝𝐴 ∧ ∃𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)𝑝 (𝑥 𝑟))))
16 simpr 475 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) → (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))
1712, 13, 7, 8paddasslem15 33936 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
1816, 17syl3anl3 1367 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
19183exp2 1276 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑝𝐴 → ((𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) → (𝑝 (𝑥 𝑟) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
2019imp 443 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) ∧ 𝑝𝐴) → ((𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) → (𝑝 (𝑥 𝑟) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))
2120rexlimdvv 3013 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) ∧ 𝑝𝐴) → (∃𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)𝑝 (𝑥 𝑟) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
2221expimpd 626 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → ((𝑝𝐴 ∧ ∃𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)𝑝 (𝑥 𝑟)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
2315, 22sylbid 228 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑝 ∈ (𝑋 + (𝑌 + 𝑍)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
2423ssrdv 3568 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2774  wrex 2891  wss 3534  c0 3868   class class class wbr 4572  cfv 5785  (class class class)co 6522  lecple 15716  joincjn 16708  Latclat 16809  Atomscatm 33366  HLchlt 33453  +𝑃cpadd 33897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-ral 2895  df-rex 2896  df-reu 2897  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-id 4938  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-1st 7031  df-2nd 7032  df-preset 16692  df-poset 16710  df-plt 16722  df-lub 16738  df-glb 16739  df-join 16740  df-meet 16741  df-p0 16803  df-lat 16810  df-clat 16872  df-oposet 33279  df-ol 33281  df-oml 33282  df-covers 33369  df-ats 33370  df-atl 33401  df-cvlat 33425  df-hlat 33454  df-padd 33898
This theorem is referenced by:  paddasslem18  33939
  Copyright terms: Public domain W3C validator