Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem17 Structured version   Visualization version   GIF version

Theorem paddasslem17 36966
Description: Lemma for paddass 36968. The case when at least one sum argument is empty. (Contributed by NM, 12-Jan-2012.)
Hypotheses
Ref Expression
paddass.a 𝐴 = (Atoms‘𝐾)
paddass.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddasslem17 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))

Proof of Theorem paddasslem17
StepHypRef Expression
1 ianor 978 . . . 4 (¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ↔ (¬ (𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∨ ¬ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)))
2 ianor 978 . . . . . 6 (¬ (𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ↔ (¬ 𝑋 ≠ ∅ ∨ ¬ (𝑌 + 𝑍) ≠ ∅))
3 nne 3020 . . . . . . 7 𝑋 ≠ ∅ ↔ 𝑋 = ∅)
4 nne 3020 . . . . . . 7 (¬ (𝑌 + 𝑍) ≠ ∅ ↔ (𝑌 + 𝑍) = ∅)
53, 4orbi12i 911 . . . . . 6 ((¬ 𝑋 ≠ ∅ ∨ ¬ (𝑌 + 𝑍) ≠ ∅) ↔ (𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅))
62, 5bitri 277 . . . . 5 (¬ (𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ↔ (𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅))
7 ianor 978 . . . . . 6 (¬ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅) ↔ (¬ 𝑌 ≠ ∅ ∨ ¬ 𝑍 ≠ ∅))
8 nne 3020 . . . . . . 7 𝑌 ≠ ∅ ↔ 𝑌 = ∅)
9 nne 3020 . . . . . . 7 𝑍 ≠ ∅ ↔ 𝑍 = ∅)
108, 9orbi12i 911 . . . . . 6 ((¬ 𝑌 ≠ ∅ ∨ ¬ 𝑍 ≠ ∅) ↔ (𝑌 = ∅ ∨ 𝑍 = ∅))
117, 10bitri 277 . . . . 5 (¬ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅) ↔ (𝑌 = ∅ ∨ 𝑍 = ∅))
126, 11orbi12i 911 . . . 4 ((¬ (𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∨ ¬ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ↔ ((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) ∨ (𝑌 = ∅ ∨ 𝑍 = ∅)))
131, 12bitri 277 . . 3 (¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ↔ ((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) ∨ (𝑌 = ∅ ∨ 𝑍 = ∅)))
14 paddass.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
15 paddass.p . . . . . . . . . . 11 + = (+𝑃𝐾)
1614, 15paddssat 36944 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑍𝐴) → (𝑌 + 𝑍) ⊆ 𝐴)
17163adant3r1 1178 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑌 + 𝑍) ⊆ 𝐴)
1814, 15padd02 36942 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑌 + 𝑍) ⊆ 𝐴) → (∅ + (𝑌 + 𝑍)) = (𝑌 + 𝑍))
1917, 18syldan 593 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (∅ + (𝑌 + 𝑍)) = (𝑌 + 𝑍))
2014, 15padd02 36942 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (∅ + 𝑌) = 𝑌)
21203ad2antr2 1185 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (∅ + 𝑌) = 𝑌)
2221oveq1d 7165 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((∅ + 𝑌) + 𝑍) = (𝑌 + 𝑍))
2319, 22eqtr4d 2859 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (∅ + (𝑌 + 𝑍)) = ((∅ + 𝑌) + 𝑍))
24 oveq1 7157 . . . . . . . 8 (𝑋 = ∅ → (𝑋 + (𝑌 + 𝑍)) = (∅ + (𝑌 + 𝑍)))
25 oveq1 7157 . . . . . . . . 9 (𝑋 = ∅ → (𝑋 + 𝑌) = (∅ + 𝑌))
2625oveq1d 7165 . . . . . . . 8 (𝑋 = ∅ → ((𝑋 + 𝑌) + 𝑍) = ((∅ + 𝑌) + 𝑍))
2724, 26eqeq12d 2837 . . . . . . 7 (𝑋 = ∅ → ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) ↔ (∅ + (𝑌 + 𝑍)) = ((∅ + 𝑌) + 𝑍)))
2823, 27syl5ibrcom 249 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 = ∅ → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍)))
29 eqimss 4023 . . . . . 6 ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))
3028, 29syl6 35 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 = ∅ → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)))
3114, 15padd01 36941 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 + ∅) = 𝑋)
32313ad2antr1 1184 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + ∅) = 𝑋)
3314, 15sspadd1 36945 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
34333adant3r3 1180 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋 ⊆ (𝑋 + 𝑌))
35 simpl 485 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝐾 ∈ HL)
3614, 15paddssat 36944 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
37363adant3r3 1180 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + 𝑌) ⊆ 𝐴)
38 simpr3 1192 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑍𝐴)
3914, 15sspadd1 36945 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴𝑍𝐴) → (𝑋 + 𝑌) ⊆ ((𝑋 + 𝑌) + 𝑍))
4035, 37, 38, 39syl3anc 1367 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + 𝑌) ⊆ ((𝑋 + 𝑌) + 𝑍))
4134, 40sstrd 3977 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋 ⊆ ((𝑋 + 𝑌) + 𝑍))
4232, 41eqsstrd 4005 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + ∅) ⊆ ((𝑋 + 𝑌) + 𝑍))
43 oveq2 7158 . . . . . . 7 ((𝑌 + 𝑍) = ∅ → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + ∅))
4443sseq1d 3998 . . . . . 6 ((𝑌 + 𝑍) = ∅ → ((𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍) ↔ (𝑋 + ∅) ⊆ ((𝑋 + 𝑌) + 𝑍)))
4542, 44syl5ibrcom 249 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑌 + 𝑍) = ∅ → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)))
4630, 45jaod 855 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)))
4714, 15padd02 36942 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑍𝐴) → (∅ + 𝑍) = 𝑍)
48473ad2antr3 1186 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (∅ + 𝑍) = 𝑍)
4948oveq2d 7166 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (∅ + 𝑍)) = (𝑋 + 𝑍))
5032oveq1d 7165 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + ∅) + 𝑍) = (𝑋 + 𝑍))
5149, 50eqtr4d 2859 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (∅ + 𝑍)) = ((𝑋 + ∅) + 𝑍))
52 oveq1 7157 . . . . . . . . 9 (𝑌 = ∅ → (𝑌 + 𝑍) = (∅ + 𝑍))
5352oveq2d 7166 . . . . . . . 8 (𝑌 = ∅ → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (∅ + 𝑍)))
54 oveq2 7158 . . . . . . . . 9 (𝑌 = ∅ → (𝑋 + 𝑌) = (𝑋 + ∅))
5554oveq1d 7165 . . . . . . . 8 (𝑌 = ∅ → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + ∅) + 𝑍))
5653, 55eqeq12d 2837 . . . . . . 7 (𝑌 = ∅ → ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) ↔ (𝑋 + (∅ + 𝑍)) = ((𝑋 + ∅) + 𝑍)))
5751, 56syl5ibrcom 249 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑌 = ∅ → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍)))
5814, 15padd01 36941 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (𝑌 + ∅) = 𝑌)
59583ad2antr2 1185 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑌 + ∅) = 𝑌)
6059oveq2d 7166 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + ∅)) = (𝑋 + 𝑌))
6114, 15padd01 36941 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ((𝑋 + 𝑌) + ∅) = (𝑋 + 𝑌))
6237, 61syldan 593 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + ∅) = (𝑋 + 𝑌))
6360, 62eqtr4d 2859 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + ∅)) = ((𝑋 + 𝑌) + ∅))
64 oveq2 7158 . . . . . . . . 9 (𝑍 = ∅ → (𝑌 + 𝑍) = (𝑌 + ∅))
6564oveq2d 7166 . . . . . . . 8 (𝑍 = ∅ → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (𝑌 + ∅)))
66 oveq2 7158 . . . . . . . 8 (𝑍 = ∅ → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑌) + ∅))
6765, 66eqeq12d 2837 . . . . . . 7 (𝑍 = ∅ → ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) ↔ (𝑋 + (𝑌 + ∅)) = ((𝑋 + 𝑌) + ∅)))
6863, 67syl5ibrcom 249 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑍 = ∅ → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍)))
6957, 68jaod 855 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑌 = ∅ ∨ 𝑍 = ∅) → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍)))
7069, 29syl6 35 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑌 = ∅ ∨ 𝑍 = ∅) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)))
7146, 70jaod 855 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) ∨ (𝑌 = ∅ ∨ 𝑍 = ∅)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)))
7213, 71syl5bi 244 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)))
73723impia 1113 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ ¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wss 3936  c0 4291  cfv 6350  (class class class)co 7150  Atomscatm 36393  HLchlt 36480  +𝑃cpadd 36925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-padd 36926
This theorem is referenced by:  paddasslem18  36967
  Copyright terms: Public domain W3C validator