Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddclN Structured version   Visualization version   GIF version

 Description: The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddidm.s 𝑆 = (PSubSp‘𝐾)
paddidm.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddclN ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)

Proof of Theorem paddclN
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1059 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝐾 ∈ HL)
2 eqid 2620 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3 paddidm.s . . . . 5 𝑆 = (PSubSp‘𝐾)
42, 3psubssat 34859 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
543adant3 1079 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
62, 3psubssat 34859 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
763adant2 1078 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
8 paddidm.p . . . 4 + = (+𝑃𝐾)
92, 8paddssat 34919 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
101, 5, 7, 9syl3anc 1324 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
11 olc 399 . . . . 5 ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
12 eqid 2620 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
13 eqid 2620 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
1412, 13, 2, 8elpadd 34904 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
151, 10, 10, 14syl3anc 1324 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
162, 8padd4N 34945 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
171, 5, 7, 5, 7, 16syl122anc 1333 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
183, 8paddidm 34946 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)
19183adant3 1079 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑋) = 𝑋)
203, 8paddidm 34946 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝑆) → (𝑌 + 𝑌) = 𝑌)
21203adant2 1078 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑌 + 𝑌) = 𝑌)
2219, 21oveq12d 6653 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = (𝑋 + 𝑌))
2317, 22eqtrd 2654 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + 𝑌))
2423eleq2d 2685 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ 𝑝 ∈ (𝑋 + 𝑌)))
2515, 24bitr3d 270 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) ↔ 𝑝 ∈ (𝑋 + 𝑌)))
2611, 25syl5ib 234 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝 ∈ (𝑋 + 𝑌)))
2726expd 452 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑝 ∈ (Atoms‘𝐾) → (∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌))))
2827ralrimiv 2962 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌)))
2912, 13, 2, 3ispsubsp2 34851 . . 3 (𝐾 ∈ HL → ((𝑋 + 𝑌) ∈ 𝑆 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌)))))
30293ad2ant1 1080 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑌) ∈ 𝑆 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌)))))
3110, 28, 30mpbir2and 956 1 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1481   ∈ wcel 1988  ∀wral 2909  ∃wrex 2910   ⊆ wss 3567   class class class wbr 4644  ‘cfv 5876  (class class class)co 6635  lecple 15929  joincjn 16925  Atomscatm 34369  HLchlt 34456  PSubSpcpsubsp 34601  +𝑃cpadd 34900 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-preset 16909  df-poset 16927  df-plt 16939  df-lub 16955  df-glb 16956  df-join 16957  df-meet 16958  df-p0 17020  df-lat 17027  df-clat 17089  df-oposet 34282  df-ol 34284  df-oml 34285  df-covers 34372  df-ats 34373  df-atl 34404  df-cvlat 34428  df-hlat 34457  df-psubsp 34608  df-padd 34901 This theorem is referenced by:  pmodl42N  34956  pclun2N  35004
 Copyright terms: Public domain W3C validator