Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddidm Structured version   Visualization version   GIF version

Theorem paddidm 33944
Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
paddidm.s 𝑆 = (PSubSp‘𝐾)
paddidm.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddidm ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)

Proof of Theorem paddidm
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 471 . . . . 5 ((𝐾𝐵𝑋𝑆) → 𝐾𝐵)
2 eqid 2605 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
3 paddidm.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
42, 3psubssat 33857 . . . . 5 ((𝐾𝐵𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
5 eqid 2605 . . . . . 6 (le‘𝐾) = (le‘𝐾)
6 eqid 2605 . . . . . 6 (join‘𝐾) = (join‘𝐾)
7 paddidm.p . . . . . 6 + = (+𝑃𝐾)
85, 6, 2, 7elpadd 33902 . . . . 5 ((𝐾𝐵𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑝 ∈ (𝑋 + 𝑋) ↔ ((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
91, 4, 4, 8syl3anc 1317 . . . 4 ((𝐾𝐵𝑋𝑆) → (𝑝 ∈ (𝑋 + 𝑋) ↔ ((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
10 pm1.2 533 . . . . . 6 ((𝑝𝑋𝑝𝑋) → 𝑝𝑋)
1110a1i 11 . . . . 5 ((𝐾𝐵𝑋𝑆) → ((𝑝𝑋𝑝𝑋) → 𝑝𝑋))
125, 6, 2, 3psubspi 33850 . . . . . . 7 (((𝐾𝐵𝑋𝑆𝑝 ∈ (Atoms‘𝐾)) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝𝑋)
13123exp1 1274 . . . . . 6 (𝐾𝐵 → (𝑋𝑆 → (𝑝 ∈ (Atoms‘𝐾) → (∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝𝑋))))
1413imp4b 610 . . . . 5 ((𝐾𝐵𝑋𝑆) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝𝑋))
1511, 14jaod 393 . . . 4 ((𝐾𝐵𝑋𝑆) → (((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → 𝑝𝑋))
169, 15sylbid 228 . . 3 ((𝐾𝐵𝑋𝑆) → (𝑝 ∈ (𝑋 + 𝑋) → 𝑝𝑋))
1716ssrdv 3569 . 2 ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) ⊆ 𝑋)
182, 7sspadd1 33918 . . 3 ((𝐾𝐵𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑋))
191, 4, 4, 18syl3anc 1317 . 2 ((𝐾𝐵𝑋𝑆) → 𝑋 ⊆ (𝑋 + 𝑋))
2017, 19eqssd 3580 1 ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1975  wrex 2892  wss 3535   class class class wbr 4573  cfv 5786  (class class class)co 6523  lecple 15717  joincjn 16709  Atomscatm 33367  PSubSpcpsubsp 33599  +𝑃cpadd 33898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-1st 7032  df-2nd 7033  df-psubsp 33606  df-padd 33899
This theorem is referenced by:  paddclN  33945  paddss  33948  pmod1i  33951
  Copyright terms: Public domain W3C validator