Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddunN Structured version   Visualization version   GIF version

Theorem paddunN 37062
Description: The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 6673.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddun.a 𝐴 = (Atoms‘𝐾)
paddun.p + = (+𝑃𝐾)
paddun.o = (⊥𝑃𝐾)
Assertion
Ref Expression
paddunN ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))

Proof of Theorem paddunN
StepHypRef Expression
1 simp1 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ HL)
2 paddun.a . . . 4 𝐴 = (Atoms‘𝐾)
3 paddun.p . . . 4 + = (+𝑃𝐾)
42, 3paddssat 36949 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ 𝐴)
52, 3paddunssN 36943 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ (𝑆 + 𝑇))
6 paddun.o . . . 4 = (⊥𝑃𝐾)
72, 6polcon3N 37052 . . 3 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴 ∧ (𝑆𝑇) ⊆ (𝑆 + 𝑇)) → ( ‘(𝑆 + 𝑇)) ⊆ ( ‘(𝑆𝑇)))
81, 4, 5, 7syl3anc 1367 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) ⊆ ( ‘(𝑆𝑇)))
9 hlclat 36493 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
1093ad2ant1 1129 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ CLat)
11 unss 4159 . . . . . . . . . . 11 ((𝑆𝐴𝑇𝐴) ↔ (𝑆𝑇) ⊆ 𝐴)
1211biimpi 218 . . . . . . . . . 10 ((𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
13123adant1 1126 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
14 eqid 2821 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1514, 2atssbase 36425 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
1613, 15sstrdi 3978 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ (Base‘𝐾))
17 eqid 2821 . . . . . . . . 9 (lub‘𝐾) = (lub‘𝐾)
1814, 17clatlubcl 17721 . . . . . . . 8 ((𝐾 ∈ CLat ∧ (𝑆𝑇) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾))
1910, 16, 18syl2anc 586 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾))
20 eqid 2821 . . . . . . . 8 (pmap‘𝐾) = (pmap‘𝐾)
2114, 20pmapssbaN 36895 . . . . . . 7 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾))
221, 19, 21syl2anc 586 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾))
232, 6polssatN 37043 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( 𝑆) ⊆ 𝐴)
24233adant3 1128 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑆) ⊆ 𝐴)
252, 6polssatN 37043 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ( 𝑆) ⊆ 𝐴) → ( ‘( 𝑆)) ⊆ 𝐴)
261, 24, 25syl2anc 586 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑆)) ⊆ 𝐴)
272, 6polssatN 37043 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( 𝑇) ⊆ 𝐴)
28273adant2 1127 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑇) ⊆ 𝐴)
292, 6polssatN 37043 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ( 𝑇) ⊆ 𝐴) → ( ‘( 𝑇)) ⊆ 𝐴)
301, 28, 29syl2anc 586 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑇)) ⊆ 𝐴)
311, 26, 303jca 1124 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝐾 ∈ HL ∧ ( ‘( 𝑆)) ⊆ 𝐴 ∧ ( ‘( 𝑇)) ⊆ 𝐴))
322, 62polssN 37050 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴) → 𝑆 ⊆ ( ‘( 𝑆)))
33323adant3 1128 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ ( ‘( 𝑆)))
342, 62polssN 37050 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑇𝐴) → 𝑇 ⊆ ( ‘( 𝑇)))
35343adant2 1127 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ ( ‘( 𝑇)))
3633, 35jca 514 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 ⊆ ( ‘( 𝑆)) ∧ 𝑇 ⊆ ( ‘( 𝑇))))
372, 3paddss12 36954 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ( ‘( 𝑆)) ⊆ 𝐴 ∧ ( ‘( 𝑇)) ⊆ 𝐴) → ((𝑆 ⊆ ( ‘( 𝑆)) ∧ 𝑇 ⊆ ( ‘( 𝑇))) → (𝑆 + 𝑇) ⊆ (( ‘( 𝑆)) + ( ‘( 𝑇)))))
3831, 36, 37sylc 65 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (( ‘( 𝑆)) + ( ‘( 𝑇))))
3917, 2, 20, 62polvalN 37049 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( 𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))
40393adant3 1128 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))
4117, 2, 20, 62polvalN 37049 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( ‘( 𝑇)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇)))
42413adant2 1127 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑇)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇)))
4340, 42oveq12d 7173 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( ‘( 𝑆)) + ( ‘( 𝑇))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))))
4438, 43sseqtrd 4006 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))))
45 hllat 36498 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Lat)
46453ad2ant1 1129 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ Lat)
47 simp2 1133 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆𝐴)
4847, 15sstrdi 3978 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ (Base‘𝐾))
4914, 17clatlubcl 17721 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
5010, 48, 49syl2anc 586 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
51 simp3 1134 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇𝐴)
5251, 15sstrdi 3978 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ (Base‘𝐾))
5314, 17clatlubcl 17721 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
5410, 52, 53syl2anc 586 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
55 eqid 2821 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
5614, 55, 20, 3pmapjoin 36987 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5746, 50, 54, 56syl3anc 1367 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5844, 57sstrd 3976 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5914, 55, 17lubun 17732 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
6010, 48, 52, 59syl3anc 1367 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
6160fveq2d 6673 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) = ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
6258, 61sseqtrrd 4007 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
63 eqid 2821 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
6414, 63, 17lubss 17730 . . . . . 6 ((𝐾 ∈ CLat ∧ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾) ∧ (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) → ((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
6510, 22, 62, 64syl3anc 1367 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
664, 15sstrdi 3978 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (Base‘𝐾))
6714, 17clatlubcl 17721 . . . . . . 7 ((𝐾 ∈ CLat ∧ (𝑆 + 𝑇) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾))
6810, 66, 67syl2anc 586 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾))
6914, 17clatlubcl 17721 . . . . . . 7 ((𝐾 ∈ CLat ∧ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾))
7010, 22, 69syl2anc 586 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾))
7114, 63, 20pmaple 36896 . . . . . 6 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ↔ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))))
721, 68, 70, 71syl3anc 1367 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ↔ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))))
7365, 72mpbid 234 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))))
7417, 2, 20, 62polvalN 37049 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴) → ( ‘( ‘(𝑆 + 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))))
751, 4, 74syl2anc 586 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆 + 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))))
7617, 2, 20, 62polvalN 37049 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
771, 13, 76syl2anc 586 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
7817, 2, 202pmaplubN 37061 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
791, 13, 78syl2anc 586 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
8077, 79eqtr4d 2859 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))))
8173, 75, 803sstr4d 4013 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))))
822, 62polcon4bN 37053 . . . 4 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴 ∧ (𝑆𝑇) ⊆ 𝐴) → (( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))) ↔ ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇))))
831, 4, 13, 82syl3anc 1367 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))) ↔ ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇))))
8481, 83mpbid 234 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇)))
858, 84eqssd 3983 1 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cun 3933  wss 3935   class class class wbr 5065  cfv 6354  (class class class)co 7155  Basecbs 16482  lecple 16571  lubclub 17551  joincjn 17553  Latclat 17654  CLatccla 17716  Atomscatm 36398  HLchlt 36485  pmapcpmap 36632  +𝑃cpadd 36930  𝑃cpolN 37037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-riotaBAD 36088
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-undef 7938  df-proset 17537  df-poset 17555  df-plt 17567  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-p0 17648  df-p1 17649  df-lat 17655  df-clat 17717  df-oposet 36311  df-ol 36313  df-oml 36314  df-covers 36401  df-ats 36402  df-atl 36433  df-cvlat 36457  df-hlat 36486  df-psubsp 36638  df-pmap 36639  df-padd 36931  df-polarityN 37038
This theorem is referenced by:  poldmj1N  37063
  Copyright terms: Public domain W3C validator