MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicval Structured version   Visualization version   GIF version

Theorem padicval 25351
Description: Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypothesis
Ref Expression
padicval.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
Assertion
Ref Expression
padicval ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))))
Distinct variable groups:   𝑥,𝑞,𝑃   𝑥,𝑋
Allowed substitution hints:   𝐽(𝑥,𝑞)   𝑋(𝑞)

Proof of Theorem padicval
StepHypRef Expression
1 padicval.j . . . 4 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
21padicfval 25350 . . 3 (𝑃 ∈ ℙ → (𝐽𝑃) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))))
32fveq1d 6231 . 2 (𝑃 ∈ ℙ → ((𝐽𝑃)‘𝑋) = ((𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))‘𝑋))
4 eqeq1 2655 . . . 4 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
5 oveq2 6698 . . . . . 6 (𝑥 = 𝑋 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑋))
65negeqd 10313 . . . . 5 (𝑥 = 𝑋 → -(𝑃 pCnt 𝑥) = -(𝑃 pCnt 𝑋))
76oveq2d 6706 . . . 4 (𝑥 = 𝑋 → (𝑃↑-(𝑃 pCnt 𝑥)) = (𝑃↑-(𝑃 pCnt 𝑋)))
84, 7ifbieq2d 4144 . . 3 (𝑥 = 𝑋 → if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))))
9 eqid 2651 . . 3 (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))
10 c0ex 10072 . . . 4 0 ∈ V
11 ovex 6718 . . . 4 (𝑃↑-(𝑃 pCnt 𝑋)) ∈ V
1210, 11ifex 4189 . . 3 if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))) ∈ V
138, 9, 12fvmpt 6321 . 2 (𝑋 ∈ ℚ → ((𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))))
143, 13sylan9eq 2705 1 ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  ifcif 4119  cmpt 4762  cfv 5926  (class class class)co 6690  0cc0 9974  -cneg 10305  cq 11826  cexp 12900  cprime 15432   pCnt cpc 15588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-z 11416  df-q 11827
This theorem is referenced by:  padicabvcxp  25366  ostth3  25372
  Copyright terms: Public domain W3C validator