MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc11 Structured version   Visualization version   GIF version

Theorem pc11 15565
Description: The prime count function, viewed as a function from to (ℕ ↑𝑚 ℙ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pc11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem pc11
StepHypRef Expression
1 oveq2 6643 . . 3 (𝐴 = 𝐵 → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
21ralrimivw 2964 . 2 (𝐴 = 𝐵 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
3 nn0z 11385 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
4 nn0z 11385 . . . 4 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
5 zq 11779 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
6 pcxcl 15546 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑝 pCnt 𝐴) ∈ ℝ*)
75, 6sylan2 491 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑝 pCnt 𝐴) ∈ ℝ*)
8 zq 11779 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
9 pcxcl 15546 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
108, 9sylan2 491 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
117, 10anim12dan 881 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝑝 pCnt 𝐴) ∈ ℝ* ∧ (𝑝 pCnt 𝐵) ∈ ℝ*))
12 xrletri3 11970 . . . . . . . . 9 (((𝑝 pCnt 𝐴) ∈ ℝ* ∧ (𝑝 pCnt 𝐵) ∈ ℝ*) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
1311, 12syl 17 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
1413ancoms 469 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
1514ralbidva 2982 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
16 r19.26 3060 . . . . . 6 (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))
1715, 16syl6bb 276 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
18 pc2dvds 15564 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
19 pc2dvds 15564 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))
2019ancoms 469 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))
2118, 20anbi12d 746 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵𝐵𝐴) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
2217, 21bitr4d 271 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝐴𝐵𝐵𝐴)))
233, 4, 22syl2an 494 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝐴𝐵𝐵𝐴)))
24 dvdseq 15017 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴 = 𝐵)
2524ex 450 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵))
2623, 25sylbid 230 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) → 𝐴 = 𝐵))
272, 26impbid2 216 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wral 2909   class class class wbr 4644  (class class class)co 6635  *cxr 10058  cle 10060  0cn0 11277  cz 11362  cq 11773  cdvds 14964  cprime 15366   pCnt cpc 15522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-q 11774  df-rp 11818  df-fz 12312  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-dvds 14965  df-gcd 15198  df-prm 15367  df-pc 15523
This theorem is referenced by:  pcprod  15580  prmreclem2  15602  1arith  15612  isppw2  24822  sqf11  24846  bposlem3  24992
  Copyright terms: Public domain W3C validator