MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pceulem Structured version   Visualization version   GIF version

Theorem pceulem 16184
Description: Lemma for pceu 16185. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
pcval.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
pceu.3 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < )
pceu.4 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )
pceu.5 (𝜑𝑃 ∈ ℙ)
pceu.6 (𝜑𝑁 ≠ 0)
pceu.7 (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ))
pceu.8 (𝜑𝑁 = (𝑥 / 𝑦))
pceu.9 (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ))
pceu.10 (𝜑𝑁 = (𝑠 / 𝑡))
Assertion
Ref Expression
pceulem (𝜑 → (𝑆𝑇) = (𝑈𝑉))
Distinct variable groups:   𝑛,𝑠,𝑡,𝑥,𝑦,𝑁   𝑃,𝑛,𝑠,𝑡,𝑥,𝑦   𝑆,𝑠,𝑡   𝑇,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡,𝑛,𝑠)   𝑆(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)   𝑈(𝑥,𝑦,𝑡,𝑛,𝑠)   𝑉(𝑥,𝑦,𝑡,𝑛,𝑠)

Proof of Theorem pceulem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pceu.7 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ))
21simprd 498 . . . . . . . . . 10 (𝜑𝑦 ∈ ℕ)
32nncnd 11656 . . . . . . . . 9 (𝜑𝑦 ∈ ℂ)
4 pceu.9 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ))
54simpld 497 . . . . . . . . . 10 (𝜑𝑠 ∈ ℤ)
65zcnd 12091 . . . . . . . . 9 (𝜑𝑠 ∈ ℂ)
73, 6mulcomd 10664 . . . . . . . 8 (𝜑 → (𝑦 · 𝑠) = (𝑠 · 𝑦))
8 pceu.10 . . . . . . . . . 10 (𝜑𝑁 = (𝑠 / 𝑡))
9 pceu.8 . . . . . . . . . 10 (𝜑𝑁 = (𝑥 / 𝑦))
108, 9eqtr3d 2860 . . . . . . . . 9 (𝜑 → (𝑠 / 𝑡) = (𝑥 / 𝑦))
114simprd 498 . . . . . . . . . . 11 (𝜑𝑡 ∈ ℕ)
1211nncnd 11656 . . . . . . . . . 10 (𝜑𝑡 ∈ ℂ)
131simpld 497 . . . . . . . . . . 11 (𝜑𝑥 ∈ ℤ)
1413zcnd 12091 . . . . . . . . . 10 (𝜑𝑥 ∈ ℂ)
1511nnne0d 11690 . . . . . . . . . 10 (𝜑𝑡 ≠ 0)
162nnne0d 11690 . . . . . . . . . 10 (𝜑𝑦 ≠ 0)
176, 12, 14, 3, 15, 16divmuleqd 11464 . . . . . . . . 9 (𝜑 → ((𝑠 / 𝑡) = (𝑥 / 𝑦) ↔ (𝑠 · 𝑦) = (𝑥 · 𝑡)))
1810, 17mpbid 234 . . . . . . . 8 (𝜑 → (𝑠 · 𝑦) = (𝑥 · 𝑡))
197, 18eqtrd 2858 . . . . . . 7 (𝜑 → (𝑦 · 𝑠) = (𝑥 · 𝑡))
2019breq2d 5080 . . . . . 6 (𝜑 → ((𝑃𝑧) ∥ (𝑦 · 𝑠) ↔ (𝑃𝑧) ∥ (𝑥 · 𝑡)))
2120rabbidv 3482 . . . . 5 (𝜑 → {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑥 · 𝑡)})
22 oveq2 7166 . . . . . . 7 (𝑛 = 𝑧 → (𝑃𝑛) = (𝑃𝑧))
2322breq1d 5078 . . . . . 6 (𝑛 = 𝑧 → ((𝑃𝑛) ∥ (𝑦 · 𝑠) ↔ (𝑃𝑧) ∥ (𝑦 · 𝑠)))
2423cbvrabv 3493 . . . . 5 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑦 · 𝑠)}
2522breq1d 5078 . . . . . 6 (𝑛 = 𝑧 → ((𝑃𝑛) ∥ (𝑥 · 𝑡) ↔ (𝑃𝑧) ∥ (𝑥 · 𝑡)))
2625cbvrabv 3493 . . . . 5 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑥 · 𝑡)}
2721, 24, 263eqtr4g 2883 . . . 4 (𝜑 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)})
2827supeq1d 8912 . . 3 (𝜑 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
29 pceu.5 . . . 4 (𝜑𝑃 ∈ ℙ)
302nnzd 12089 . . . 4 (𝜑𝑦 ∈ ℤ)
31 pceu.6 . . . . 5 (𝜑𝑁 ≠ 0)
3212, 15div0d 11417 . . . . . . . 8 (𝜑 → (0 / 𝑡) = 0)
33 oveq1 7165 . . . . . . . . 9 (𝑠 = 0 → (𝑠 / 𝑡) = (0 / 𝑡))
3433eqeq1d 2825 . . . . . . . 8 (𝑠 = 0 → ((𝑠 / 𝑡) = 0 ↔ (0 / 𝑡) = 0))
3532, 34syl5ibrcom 249 . . . . . . 7 (𝜑 → (𝑠 = 0 → (𝑠 / 𝑡) = 0))
368eqeq1d 2825 . . . . . . 7 (𝜑 → (𝑁 = 0 ↔ (𝑠 / 𝑡) = 0))
3735, 36sylibrd 261 . . . . . 6 (𝜑 → (𝑠 = 0 → 𝑁 = 0))
3837necon3d 3039 . . . . 5 (𝜑 → (𝑁 ≠ 0 → 𝑠 ≠ 0))
3931, 38mpd 15 . . . 4 (𝜑𝑠 ≠ 0)
40 pcval.2 . . . . 5 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
41 pceu.3 . . . . 5 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < )
42 eqid 2823 . . . . 5 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < )
4340, 41, 42pcpremul 16182 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ))
4429, 30, 16, 5, 39, 43syl122anc 1375 . . 3 (𝜑 → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ))
453, 16div0d 11417 . . . . . . . 8 (𝜑 → (0 / 𝑦) = 0)
46 oveq1 7165 . . . . . . . . 9 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
4746eqeq1d 2825 . . . . . . . 8 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
4845, 47syl5ibrcom 249 . . . . . . 7 (𝜑 → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
499eqeq1d 2825 . . . . . . 7 (𝜑 → (𝑁 = 0 ↔ (𝑥 / 𝑦) = 0))
5048, 49sylibrd 261 . . . . . 6 (𝜑 → (𝑥 = 0 → 𝑁 = 0))
5150necon3d 3039 . . . . 5 (𝜑 → (𝑁 ≠ 0 → 𝑥 ≠ 0))
5231, 51mpd 15 . . . 4 (𝜑𝑥 ≠ 0)
5311nnzd 12089 . . . 4 (𝜑𝑡 ∈ ℤ)
54 pcval.1 . . . . 5 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
55 pceu.4 . . . . 5 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )
56 eqid 2823 . . . . 5 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )
5754, 55, 56pcpremul 16182 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
5829, 13, 52, 53, 15, 57syl122anc 1375 . . 3 (𝜑 → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
5928, 44, 583eqtr4d 2868 . 2 (𝜑 → (𝑇 + 𝑈) = (𝑆 + 𝑉))
60 prmuz2 16042 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
6129, 60syl 17 . . . . 5 (𝜑𝑃 ∈ (ℤ‘2))
62 eqid 2823 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}
6362, 40pcprecl 16178 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃𝑇) ∥ 𝑦))
6463simpld 497 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → 𝑇 ∈ ℕ0)
6561, 30, 16, 64syl12anc 834 . . . 4 (𝜑𝑇 ∈ ℕ0)
6665nn0cnd 11960 . . 3 (𝜑𝑇 ∈ ℂ)
67 eqid 2823 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}
6867, 41pcprecl 16178 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃𝑈) ∥ 𝑠))
6968simpld 497 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → 𝑈 ∈ ℕ0)
7061, 5, 39, 69syl12anc 834 . . . 4 (𝜑𝑈 ∈ ℕ0)
7170nn0cnd 11960 . . 3 (𝜑𝑈 ∈ ℂ)
72 eqid 2823 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}
7372, 54pcprecl 16178 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑥))
7473simpld 497 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → 𝑆 ∈ ℕ0)
7561, 13, 52, 74syl12anc 834 . . . 4 (𝜑𝑆 ∈ ℕ0)
7675nn0cnd 11960 . . 3 (𝜑𝑆 ∈ ℂ)
77 eqid 2823 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}
7877, 55pcprecl 16178 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑉 ∈ ℕ0 ∧ (𝑃𝑉) ∥ 𝑡))
7978simpld 497 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → 𝑉 ∈ ℕ0)
8061, 53, 15, 79syl12anc 834 . . . 4 (𝜑𝑉 ∈ ℕ0)
8180nn0cnd 11960 . . 3 (𝜑𝑉 ∈ ℂ)
8266, 71, 76, 81addsubeq4d 11050 . 2 (𝜑 → ((𝑇 + 𝑈) = (𝑆 + 𝑉) ↔ (𝑆𝑇) = (𝑈𝑉)))
8359, 82mpbid 234 1 (𝜑 → (𝑆𝑇) = (𝑈𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  {crab 3144   class class class wbr 5068  cfv 6357  (class class class)co 7158  supcsup 8906  cr 10538  0cc0 10539   + caddc 10542   · cmul 10544   < clt 10677  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  cuz 12246  cexp 13432  cdvds 15609  cprime 16017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-gcd 15846  df-prm 16018
This theorem is referenced by:  pceu  16185
  Copyright terms: Public domain W3C validator