Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclbtwnN Structured version   Visualization version   GIF version

Theorem pclbtwnN 37027
Description: A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclid.s 𝑆 = (PSubSp‘𝐾)
pclid.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclbtwnN (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 = (𝑈𝑌))

Proof of Theorem pclbtwnN
StepHypRef Expression
1 simprr 771 . 2 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 ⊆ (𝑈𝑌))
2 simpll 765 . . . 4 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝐾𝑉)
3 simprl 769 . . . 4 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑌𝑋)
4 eqid 2821 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
5 pclid.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
64, 5psubssat 36884 . . . . 5 ((𝐾𝑉𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
76adantr 483 . . . 4 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 ⊆ (Atoms‘𝐾))
8 pclid.c . . . . 5 𝑈 = (PCl‘𝐾)
94, 8pclssN 37024 . . . 4 ((𝐾𝑉𝑌𝑋𝑋 ⊆ (Atoms‘𝐾)) → (𝑈𝑌) ⊆ (𝑈𝑋))
102, 3, 7, 9syl3anc 1367 . . 3 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → (𝑈𝑌) ⊆ (𝑈𝑋))
115, 8pclidN 37026 . . . 4 ((𝐾𝑉𝑋𝑆) → (𝑈𝑋) = 𝑋)
1211adantr 483 . . 3 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → (𝑈𝑋) = 𝑋)
1310, 12sseqtrd 4006 . 2 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → (𝑈𝑌) ⊆ 𝑋)
141, 13eqssd 3983 1 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 = (𝑈𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wss 3935  cfv 6349  Atomscatm 36393  PSubSpcpsubsp 36626  PClcpclN 37017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-psubsp 36633  df-pclN 37018
This theorem is referenced by:  pclfinN  37030
  Copyright terms: Public domain W3C validator