Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclcmpatN Structured version   Visualization version   GIF version

Theorem pclcmpatN 34005
Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfin.a 𝐴 = (Atoms‘𝐾)
pclfin.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclcmpatN ((𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ (𝑈𝑋)) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑈   𝑦,𝐾   𝑦,𝑋   𝑦,𝑃

Proof of Theorem pclcmpatN
StepHypRef Expression
1 pclfin.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2 pclfin.c . . . . . 6 𝑈 = (PCl‘𝐾)
31, 2pclfinN 34004 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
43eleq2d 2669 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) ↔ 𝑃 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))
5 eliun 4451 . . . 4 (𝑃 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦))
64, 5syl6bb 274 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦)))
7 elin 3754 . . . . . . 7 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋))
8 elpwi 4113 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
98anim2i 590 . . . . . . 7 ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦𝑋))
107, 9sylbi 205 . . . . . 6 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦𝑋))
1110anim1i 589 . . . . 5 ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) → ((𝑦 ∈ Fin ∧ 𝑦𝑋) ∧ 𝑃 ∈ (𝑈𝑦)))
12 anass 678 . . . . 5 (((𝑦 ∈ Fin ∧ 𝑦𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) ↔ (𝑦 ∈ Fin ∧ (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
1311, 12sylib 206 . . . 4 ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) → (𝑦 ∈ Fin ∧ (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
1413reximi2 2989 . . 3 (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
156, 14syl6bi 241 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
16153impia 1252 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ (𝑈𝑋)) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wrex 2893  cin 3535  wss 3536  𝒫 cpw 4104   ciun 4446  cfv 5787  Fincfn 7815  Atomscatm 33368  AtLatcal 33369  PClcpclN 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-en 7816  df-fin 7819  df-preset 16694  df-poset 16712  df-plt 16724  df-lub 16740  df-glb 16741  df-join 16742  df-meet 16743  df-p0 16805  df-lat 16812  df-covers 33371  df-ats 33372  df-atl 33403  df-psubsp 33607  df-pclN 33992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator