Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfinclN Structured version   Visualization version   GIF version

Theorem pclfinclN 35554
Description: The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 35504 and also pclcmpatN 35505. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfincl.a 𝐴 = (Atoms‘𝐾)
pclfincl.c 𝑈 = (PCl‘𝐾)
pclfincl.s 𝑆 = (PSubCl‘𝐾)
Assertion
Ref Expression
pclfinclN ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)

Proof of Theorem pclfinclN
Dummy variables 𝑞 𝑝 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3659 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
21anbi2d 740 . . . . 5 (𝑥 = ∅ → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ ∅ ⊆ 𝐴)))
3 fveq2 6229 . . . . . 6 (𝑥 = ∅ → (𝑈𝑥) = (𝑈‘∅))
43eleq1d 2715 . . . . 5 (𝑥 = ∅ → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈‘∅) ∈ 𝑆))
52, 4imbi12d 333 . . . 4 (𝑥 = ∅ → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ ∅ ⊆ 𝐴) → (𝑈‘∅) ∈ 𝑆)))
6 sseq1 3659 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
76anbi2d 740 . . . . 5 (𝑥 = 𝑦 → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ 𝑦𝐴)))
8 fveq2 6229 . . . . . 6 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
98eleq1d 2715 . . . . 5 (𝑥 = 𝑦 → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈𝑦) ∈ 𝑆))
107, 9imbi12d 333 . . . 4 (𝑥 = 𝑦 → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)))
11 sseq1 3659 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
1211anbi2d 740 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)))
13 fveq2 6229 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑈𝑥) = (𝑈‘(𝑦 ∪ {𝑧})))
1413eleq1d 2715 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
1512, 14imbi12d 333 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)))
16 sseq1 3659 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
1716anbi2d 740 . . . . 5 (𝑥 = 𝑋 → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ 𝑋𝐴)))
18 fveq2 6229 . . . . . 6 (𝑥 = 𝑋 → (𝑈𝑥) = (𝑈𝑋))
1918eleq1d 2715 . . . . 5 (𝑥 = 𝑋 → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈𝑋) ∈ 𝑆))
2017, 19imbi12d 333 . . . 4 (𝑥 = 𝑋 → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)))
21 pclfincl.c . . . . . . 7 𝑈 = (PCl‘𝐾)
2221pcl0N 35526 . . . . . 6 (𝐾 ∈ HL → (𝑈‘∅) = ∅)
23 pclfincl.s . . . . . . 7 𝑆 = (PSubCl‘𝐾)
24230psubclN 35547 . . . . . 6 (𝐾 ∈ HL → ∅ ∈ 𝑆)
2522, 24eqeltrd 2730 . . . . 5 (𝐾 ∈ HL → (𝑈‘∅) ∈ 𝑆)
2625adantr 480 . . . 4 ((𝐾 ∈ HL ∧ ∅ ⊆ 𝐴) → (𝑈‘∅) ∈ 𝑆)
27 anass 682 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴) ↔ (𝐾 ∈ HL ∧ (𝑦𝐴𝑧𝐴)))
28 vex 3234 . . . . . . . . . . 11 𝑧 ∈ V
2928snss 4348 . . . . . . . . . 10 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
3029anbi2i 730 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) ↔ (𝑦𝐴 ∧ {𝑧} ⊆ 𝐴))
31 unss 3820 . . . . . . . . 9 ((𝑦𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3230, 31bitri 264 . . . . . . . 8 ((𝑦𝐴𝑧𝐴) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3332anbi2i 730 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑦𝐴𝑧𝐴)) ↔ (𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
3427, 33bitr2i 265 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ↔ ((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴))
35 simpllr 815 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 = ∅)
3635uneq1d 3799 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) = (∅ ∪ {𝑧}))
37 uncom 3790 . . . . . . . . . . . . . . 15 (∅ ∪ {𝑧}) = ({𝑧} ∪ ∅)
38 un0 4000 . . . . . . . . . . . . . . 15 ({𝑧} ∪ ∅) = {𝑧}
3937, 38eqtri 2673 . . . . . . . . . . . . . 14 (∅ ∪ {𝑧}) = {𝑧}
4036, 39syl6eq 2701 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) = {𝑧})
4140fveq2d 6233 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = (𝑈‘{𝑧}))
42 simplrl 817 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ HL)
43 hlatl 34965 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4442, 43syl 17 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ AtLat)
45 simprr 811 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑧𝐴)
46 pclfincl.a . . . . . . . . . . . . . . 15 𝐴 = (Atoms‘𝐾)
47 eqid 2651 . . . . . . . . . . . . . . 15 (PSubSp‘𝐾) = (PSubSp‘𝐾)
4846, 47snatpsubN 35354 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑧𝐴) → {𝑧} ∈ (PSubSp‘𝐾))
4944, 45, 48syl2anc 694 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ∈ (PSubSp‘𝐾))
5047, 21pclidN 35500 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ {𝑧} ∈ (PSubSp‘𝐾)) → (𝑈‘{𝑧}) = {𝑧})
5142, 49, 50syl2anc 694 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘{𝑧}) = {𝑧})
5241, 51eqtrd 2685 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = {𝑧})
5346, 23atpsubclN 35549 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧𝐴) → {𝑧} ∈ 𝑆)
5442, 45, 53syl2anc 694 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ∈ 𝑆)
5552, 54eqeltrd 2730 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)
5655exp43 639 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 = ∅) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
57 simplrl 817 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ HL)
5846, 21pclssidN 35499 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑦𝐴) → 𝑦 ⊆ (𝑈𝑦))
5958ad2antlr 763 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 ⊆ (𝑈𝑦))
60 unss1 3815 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ (𝑈𝑦) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦) ∪ {𝑧}))
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦) ∪ {𝑧}))
62 simprl 809 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ∈ 𝑆)
6346, 23psubclssatN 35545 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑈𝑦) ∈ 𝑆) → (𝑈𝑦) ⊆ 𝐴)
6457, 62, 63syl2anc 694 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ⊆ 𝐴)
65 snssi 4371 . . . . . . . . . . . . . . . . 17 (𝑧𝐴 → {𝑧} ⊆ 𝐴)
6665ad2antll 765 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ⊆ 𝐴)
67 eqid 2651 . . . . . . . . . . . . . . . . 17 (+𝑃𝐾) = (+𝑃𝐾)
6846, 67paddunssN 35412 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑈𝑦) ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → ((𝑈𝑦) ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
6957, 64, 66, 68syl3anc 1366 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
7061, 69sstrd 3646 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
7146, 67paddssat 35418 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑈𝑦) ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴)
7257, 64, 66, 71syl3anc 1366 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴)
7346, 21pclssN 35498 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})))
7457, 70, 72, 73syl3anc 1366 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})))
75 simprr 811 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑧𝐴)
7646, 67, 23paddatclN 35553 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑈𝑦) ∈ 𝑆𝑧𝐴) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆)
7757, 62, 75, 76syl3anc 1366 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆)
7847, 23psubclsubN 35544 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾))
7957, 77, 78syl2anc 694 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾))
8047, 21pclidN 35500 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾)) → (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8157, 79, 80syl2anc 694 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8274, 81sseqtrd 3674 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
83 hllat 34968 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ Lat)
8457, 83syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ Lat)
85 simpllr 815 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 ≠ ∅)
8646, 21pcl0bN 35527 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) = ∅ ↔ 𝑦 = ∅))
8786ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) = ∅ ↔ 𝑦 = ∅))
8887necon3bid 2867 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) ≠ ∅ ↔ 𝑦 ≠ ∅))
8985, 88mpbird 247 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ≠ ∅)
90 eqid 2651 . . . . . . . . . . . . . . . . . 18 (le‘𝐾) = (le‘𝐾)
91 eqid 2651 . . . . . . . . . . . . . . . . . 18 (join‘𝐾) = (join‘𝐾)
9290, 91, 46, 67elpaddat 35408 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ (𝑈𝑦) ⊆ 𝐴𝑧𝐴) ∧ (𝑈𝑦) ≠ ∅) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ↔ (𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))))
9384, 64, 75, 89, 92syl31anc 1369 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ↔ (𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))))
94 simp1rl 1146 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ HL)
95943ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) → 𝐾 ∈ HL)
9695adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝐾 ∈ HL)
97 simprl 809 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑤 ∈ (PSubSp‘𝐾))
98 simpl13 1158 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞𝐴)
99 unss 3820 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑤)
100 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) → 𝑦𝑤)
10199, 100sylbir 225 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑦𝑤)
102101ad2antll 765 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑦𝑤)
103 simpl2 1085 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑝 ∈ (𝑈𝑦))
10447, 21elpcliN 35497 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦𝑤𝑤 ∈ (PSubSp‘𝐾)) ∧ 𝑝 ∈ (𝑈𝑦)) → 𝑝𝑤)
10596, 102, 97, 103, 104syl31anc 1369 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑝𝑤)
10628snss 4348 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑤 ↔ {𝑧} ⊆ 𝑤)
107106biimpri 218 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑧} ⊆ 𝑤𝑧𝑤)
108107adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) → 𝑧𝑤)
10999, 108sylbir 225 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑧𝑤)
110109ad2antll 765 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑧𝑤)
111 simpl3 1086 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))
11290, 91, 46, 47psubspi2N 35352 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑤 ∈ (PSubSp‘𝐾) ∧ 𝑞𝐴) ∧ (𝑝𝑤𝑧𝑤𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))) → 𝑞𝑤)
11396, 97, 98, 105, 110, 111, 112syl33anc 1381 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞𝑤)
114113exp520 1310 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → (𝑝 ∈ (𝑈𝑦) → (𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))))
115114rexlimdv 3059 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → (∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
1161153expia 1286 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞𝐴 → (∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))))
117116impd 446 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
11893, 117sylbid 230 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
119118ralrimdv 2997 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
120 simplrr 818 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦𝐴)
121120, 75jca 553 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦𝐴𝑧𝐴))
122121, 32sylib 208 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
123 vex 3234 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
12446, 47, 21, 123elpclN 35496 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧})) ↔ ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
12557, 122, 124syl2anc 694 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧})) ↔ ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
126119, 125sylibrd 249 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → 𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧}))))
127126ssrdv 3642 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ (𝑈‘(𝑦 ∪ {𝑧})))
12882, 127eqssd 3653 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
129128, 77eqeltrd 2730 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)
130129exp43 639 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
13156, 130pm2.61dane 2910 . . . . . . . 8 (𝑦 ∈ Fin → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
132131a2d 29 . . . . . . 7 (𝑦 ∈ Fin → (((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
133132imp4b 612 . . . . . 6 ((𝑦 ∈ Fin ∧ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)) → (((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
13434, 133syl5bi 232 . . . . 5 ((𝑦 ∈ Fin ∧ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)) → ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
135134ex 449 . . . 4 (𝑦 ∈ Fin → (((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆) → ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)))
1365, 10, 15, 20, 26, 135findcard2 8241 . . 3 (𝑋 ∈ Fin → ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆))
1371363impib 1281 . 2 ((𝑋 ∈ Fin ∧ 𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)
1381373coml 1292 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  cun 3605  wss 3607  c0 3948  {csn 4210   class class class wbr 4685  cfv 5926  (class class class)co 6690  Fincfn 7997  lecple 15995  joincjn 16991  Latclat 17092  Atomscatm 34868  AtLatcal 34869  HLchlt 34955  PSubSpcpsubsp 35100  +𝑃cpadd 35399  PClcpclN 35491  PSubClcpscN 35538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-riotaBAD 34557
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-undef 7444  df-1o 7605  df-er 7787  df-en 7998  df-fin 8001  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-pclN 35492  df-polarityN 35507  df-psubclN 35539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator