Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfinclN Structured version   Visualization version   GIF version

Theorem pclfinclN 34050
Description: The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 34000 and also pclcmpatN 34001. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfincl.a 𝐴 = (Atoms‘𝐾)
pclfincl.c 𝑈 = (PCl‘𝐾)
pclfincl.s 𝑆 = (PSubCl‘𝐾)
Assertion
Ref Expression
pclfinclN ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)

Proof of Theorem pclfinclN
Dummy variables 𝑞 𝑝 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3588 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
21anbi2d 735 . . . . 5 (𝑥 = ∅ → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ ∅ ⊆ 𝐴)))
3 fveq2 6088 . . . . . 6 (𝑥 = ∅ → (𝑈𝑥) = (𝑈‘∅))
43eleq1d 2671 . . . . 5 (𝑥 = ∅ → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈‘∅) ∈ 𝑆))
52, 4imbi12d 332 . . . 4 (𝑥 = ∅ → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ ∅ ⊆ 𝐴) → (𝑈‘∅) ∈ 𝑆)))
6 sseq1 3588 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
76anbi2d 735 . . . . 5 (𝑥 = 𝑦 → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ 𝑦𝐴)))
8 fveq2 6088 . . . . . 6 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
98eleq1d 2671 . . . . 5 (𝑥 = 𝑦 → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈𝑦) ∈ 𝑆))
107, 9imbi12d 332 . . . 4 (𝑥 = 𝑦 → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)))
11 sseq1 3588 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
1211anbi2d 735 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)))
13 fveq2 6088 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑈𝑥) = (𝑈‘(𝑦 ∪ {𝑧})))
1413eleq1d 2671 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
1512, 14imbi12d 332 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)))
16 sseq1 3588 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
1716anbi2d 735 . . . . 5 (𝑥 = 𝑋 → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ 𝑋𝐴)))
18 fveq2 6088 . . . . . 6 (𝑥 = 𝑋 → (𝑈𝑥) = (𝑈𝑋))
1918eleq1d 2671 . . . . 5 (𝑥 = 𝑋 → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈𝑋) ∈ 𝑆))
2017, 19imbi12d 332 . . . 4 (𝑥 = 𝑋 → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)))
21 pclfincl.c . . . . . . 7 𝑈 = (PCl‘𝐾)
2221pcl0N 34022 . . . . . 6 (𝐾 ∈ HL → (𝑈‘∅) = ∅)
23 pclfincl.s . . . . . . 7 𝑆 = (PSubCl‘𝐾)
24230psubclN 34043 . . . . . 6 (𝐾 ∈ HL → ∅ ∈ 𝑆)
2522, 24eqeltrd 2687 . . . . 5 (𝐾 ∈ HL → (𝑈‘∅) ∈ 𝑆)
2625adantr 479 . . . 4 ((𝐾 ∈ HL ∧ ∅ ⊆ 𝐴) → (𝑈‘∅) ∈ 𝑆)
27 anass 678 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴) ↔ (𝐾 ∈ HL ∧ (𝑦𝐴𝑧𝐴)))
28 vex 3175 . . . . . . . . . . 11 𝑧 ∈ V
2928snss 4258 . . . . . . . . . 10 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
3029anbi2i 725 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) ↔ (𝑦𝐴 ∧ {𝑧} ⊆ 𝐴))
31 unss 3748 . . . . . . . . 9 ((𝑦𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3230, 31bitri 262 . . . . . . . 8 ((𝑦𝐴𝑧𝐴) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3332anbi2i 725 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑦𝐴𝑧𝐴)) ↔ (𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
3427, 33bitr2i 263 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ↔ ((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴))
35 simpllr 794 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 = ∅)
3635uneq1d 3727 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) = (∅ ∪ {𝑧}))
37 uncom 3718 . . . . . . . . . . . . . . 15 (∅ ∪ {𝑧}) = ({𝑧} ∪ ∅)
38 un0 3918 . . . . . . . . . . . . . . 15 ({𝑧} ∪ ∅) = {𝑧}
3937, 38eqtri 2631 . . . . . . . . . . . . . 14 (∅ ∪ {𝑧}) = {𝑧}
4036, 39syl6eq 2659 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) = {𝑧})
4140fveq2d 6092 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = (𝑈‘{𝑧}))
42 simplrl 795 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ HL)
43 hlatl 33461 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4442, 43syl 17 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ AtLat)
45 simprr 791 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑧𝐴)
46 pclfincl.a . . . . . . . . . . . . . . 15 𝐴 = (Atoms‘𝐾)
47 eqid 2609 . . . . . . . . . . . . . . 15 (PSubSp‘𝐾) = (PSubSp‘𝐾)
4846, 47snatpsubN 33850 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑧𝐴) → {𝑧} ∈ (PSubSp‘𝐾))
4944, 45, 48syl2anc 690 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ∈ (PSubSp‘𝐾))
5047, 21pclidN 33996 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ {𝑧} ∈ (PSubSp‘𝐾)) → (𝑈‘{𝑧}) = {𝑧})
5142, 49, 50syl2anc 690 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘{𝑧}) = {𝑧})
5241, 51eqtrd 2643 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = {𝑧})
5346, 23atpsubclN 34045 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧𝐴) → {𝑧} ∈ 𝑆)
5442, 45, 53syl2anc 690 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ∈ 𝑆)
5552, 54eqeltrd 2687 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)
5655exp43 637 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 = ∅) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
57 simplrl 795 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ HL)
5846, 21pclssidN 33995 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑦𝐴) → 𝑦 ⊆ (𝑈𝑦))
5958ad2antlr 758 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 ⊆ (𝑈𝑦))
60 unss1 3743 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ (𝑈𝑦) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦) ∪ {𝑧}))
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦) ∪ {𝑧}))
62 simprl 789 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ∈ 𝑆)
6346, 23psubclssatN 34041 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑈𝑦) ∈ 𝑆) → (𝑈𝑦) ⊆ 𝐴)
6457, 62, 63syl2anc 690 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ⊆ 𝐴)
65 snssi 4279 . . . . . . . . . . . . . . . . 17 (𝑧𝐴 → {𝑧} ⊆ 𝐴)
6665ad2antll 760 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ⊆ 𝐴)
67 eqid 2609 . . . . . . . . . . . . . . . . 17 (+𝑃𝐾) = (+𝑃𝐾)
6846, 67paddunssN 33908 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑈𝑦) ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → ((𝑈𝑦) ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
6957, 64, 66, 68syl3anc 1317 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
7061, 69sstrd 3577 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
7146, 67paddssat 33914 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑈𝑦) ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴)
7257, 64, 66, 71syl3anc 1317 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴)
7346, 21pclssN 33994 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})))
7457, 70, 72, 73syl3anc 1317 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})))
75 simprr 791 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑧𝐴)
7646, 67, 23paddatclN 34049 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑈𝑦) ∈ 𝑆𝑧𝐴) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆)
7757, 62, 75, 76syl3anc 1317 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆)
7847, 23psubclsubN 34040 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾))
7957, 77, 78syl2anc 690 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾))
8047, 21pclidN 33996 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾)) → (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8157, 79, 80syl2anc 690 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8274, 81sseqtrd 3603 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
83 hllat 33464 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ Lat)
8457, 83syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ Lat)
85 simpllr 794 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 ≠ ∅)
8646, 21pcl0bN 34023 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) = ∅ ↔ 𝑦 = ∅))
8786ad2antlr 758 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) = ∅ ↔ 𝑦 = ∅))
8887necon3bid 2825 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) ≠ ∅ ↔ 𝑦 ≠ ∅))
8985, 88mpbird 245 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ≠ ∅)
90 eqid 2609 . . . . . . . . . . . . . . . . . 18 (le‘𝐾) = (le‘𝐾)
91 eqid 2609 . . . . . . . . . . . . . . . . . 18 (join‘𝐾) = (join‘𝐾)
9290, 91, 46, 67elpaddat 33904 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ (𝑈𝑦) ⊆ 𝐴𝑧𝐴) ∧ (𝑈𝑦) ≠ ∅) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ↔ (𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))))
9384, 64, 75, 89, 92syl31anc 1320 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ↔ (𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))))
94 simp1rl 1118 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ HL)
95943ad2ant1 1074 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) → 𝐾 ∈ HL)
9695adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝐾 ∈ HL)
97 simprl 789 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑤 ∈ (PSubSp‘𝐾))
98 simpl13 1130 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞𝐴)
99 unss 3748 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑤)
100 simpl 471 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) → 𝑦𝑤)
10199, 100sylbir 223 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑦𝑤)
102101ad2antll 760 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑦𝑤)
103 simpl2 1057 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑝 ∈ (𝑈𝑦))
10447, 21elpcliN 33993 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦𝑤𝑤 ∈ (PSubSp‘𝐾)) ∧ 𝑝 ∈ (𝑈𝑦)) → 𝑝𝑤)
10596, 102, 97, 103, 104syl31anc 1320 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑝𝑤)
10628snss 4258 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑤 ↔ {𝑧} ⊆ 𝑤)
107106biimpri 216 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑧} ⊆ 𝑤𝑧𝑤)
108107adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) → 𝑧𝑤)
10999, 108sylbir 223 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑧𝑤)
110109ad2antll 760 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑧𝑤)
111 simpl3 1058 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))
11290, 91, 46, 47psubspi2N 33848 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑤 ∈ (PSubSp‘𝐾) ∧ 𝑞𝐴) ∧ (𝑝𝑤𝑧𝑤𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))) → 𝑞𝑤)
11396, 97, 98, 105, 110, 111, 112syl33anc 1332 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞𝑤)
114113exp520 1279 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → (𝑝 ∈ (𝑈𝑦) → (𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))))
115114rexlimdv 3011 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → (∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
1161153expia 1258 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞𝐴 → (∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))))
117116impd 445 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
11893, 117sylbid 228 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
119118ralrimdv 2950 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
120 simplrr 796 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦𝐴)
121120, 75jca 552 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦𝐴𝑧𝐴))
122121, 32sylib 206 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
123 vex 3175 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
12446, 47, 21, 123elpclN 33992 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧})) ↔ ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
12557, 122, 124syl2anc 690 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧})) ↔ ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
126119, 125sylibrd 247 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → 𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧}))))
127126ssrdv 3573 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ (𝑈‘(𝑦 ∪ {𝑧})))
12882, 127eqssd 3584 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
129128, 77eqeltrd 2687 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)
130129exp43 637 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
13156, 130pm2.61dane 2868 . . . . . . . 8 (𝑦 ∈ Fin → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
132131a2d 29 . . . . . . 7 (𝑦 ∈ Fin → (((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
133132imp4b 610 . . . . . 6 ((𝑦 ∈ Fin ∧ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)) → (((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
13434, 133syl5bi 230 . . . . 5 ((𝑦 ∈ Fin ∧ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)) → ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
135134ex 448 . . . 4 (𝑦 ∈ Fin → (((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆) → ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)))
1365, 10, 15, 20, 26, 135findcard2 8062 . . 3 (𝑋 ∈ Fin → ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆))
1371363impib 1253 . 2 ((𝑋 ∈ Fin ∧ 𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)
1381373coml 1263 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  cun 3537  wss 3539  c0 3873  {csn 4124   class class class wbr 4577  cfv 5790  (class class class)co 6527  Fincfn 7818  lecple 15721  joincjn 16713  Latclat 16814  Atomscatm 33364  AtLatcal 33365  HLchlt 33451  PSubSpcpsubsp 33596  +𝑃cpadd 33895  PClcpclN 33987  PSubClcpscN 34034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-riotaBAD 33053
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-undef 7263  df-1o 7424  df-er 7606  df-en 7819  df-fin 7822  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452  df-psubsp 33603  df-pmap 33604  df-padd 33896  df-pclN 33988  df-polarityN 34003  df-psubclN 34035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator