Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclidN Structured version   Visualization version   GIF version

Theorem pclidN 35703
Description: The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclid.s 𝑆 = (PSubSp‘𝐾)
pclid.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclidN ((𝐾𝑉𝑋𝑆) → (𝑈𝑋) = 𝑋)

Proof of Theorem pclidN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
2 pclid.s . . . 4 𝑆 = (PSubSp‘𝐾)
31, 2psubssat 35561 . . 3 ((𝐾𝑉𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
4 pclid.c . . . 4 𝑈 = (PCl‘𝐾)
51, 2, 4pclvalN 35697 . . 3 ((𝐾𝑉𝑋 ⊆ (Atoms‘𝐾)) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
63, 5syldan 488 . 2 ((𝐾𝑉𝑋𝑆) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
7 intmin 4649 . . 3 (𝑋𝑆 {𝑦𝑆𝑋𝑦} = 𝑋)
87adantl 473 . 2 ((𝐾𝑉𝑋𝑆) → {𝑦𝑆𝑋𝑦} = 𝑋)
96, 8eqtrd 2794 1 ((𝐾𝑉𝑋𝑆) → (𝑈𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {crab 3054  wss 3715   cint 4627  cfv 6049  Atomscatm 35071  PSubSpcpsubsp 35303  PClcpclN 35694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-psubsp 35310  df-pclN 35695
This theorem is referenced by:  pclbtwnN  35704  pclunN  35705  pclun2N  35706  pclfinN  35707  pclss2polN  35728  pclfinclN  35757
  Copyright terms: Public domain W3C validator