![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclssN | Structured version Visualization version GIF version |
Description: Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclss.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclssN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3751 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑌 → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) | |
2 | 1 | 3ad2ant2 1129 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) |
3 | 2 | adantr 472 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑦 ∈ (PSubSp‘𝐾)) → (𝑌 ⊆ 𝑦 → 𝑋 ⊆ 𝑦)) |
4 | 3 | ss2rabdv 3824 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
5 | intss 4650 | . . 3 ⊢ ({𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦} ⊆ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} → ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} ⊆ ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦} ⊆ ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
7 | simp1 1131 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝐾 ∈ 𝑉) | |
8 | sstr 3752 | . . . 4 ⊢ ((𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) | |
9 | 8 | 3adant1 1125 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) |
10 | pclss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | eqid 2760 | . . . 4 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
12 | pclss.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
13 | 10, 11, 12 | pclvalN 35697 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
14 | 7, 9, 13 | syl2anc 696 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋 ⊆ 𝑦}) |
15 | 10, 11, 12 | pclvalN 35697 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑌) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
16 | 15 | 3adant2 1126 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑌) = ∩ {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑌 ⊆ 𝑦}) |
17 | 6, 14, 16 | 3sstr4d 3789 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 {crab 3054 ⊆ wss 3715 ∩ cint 4627 ‘cfv 6049 Atomscatm 35071 PSubSpcpsubsp 35303 PClcpclN 35694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-psubsp 35310 df-pclN 35695 |
This theorem is referenced by: pclbtwnN 35704 pclunN 35705 pclfinN 35707 pclss2polN 35728 pclfinclN 35757 |
Copyright terms: Public domain | W3C validator |