Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcmplfin Structured version   Visualization version   GIF version

Theorem pcmplfin 31126
Description: Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement 𝑣 that is locally finite. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypothesis
Ref Expression
pcmplfin.x 𝑋 = 𝐽
Assertion
Ref Expression
pcmplfin ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
Distinct variable groups:   𝑣,𝐽   𝑣,𝑈
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem pcmplfin
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ssexg 5229 . . . . . 6 ((𝑈𝐽𝐽 ∈ Paracomp) → 𝑈 ∈ V)
21ancoms 461 . . . . 5 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽) → 𝑈 ∈ V)
323adant3 1128 . . . 4 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈 ∈ V)
4 simp2 1133 . . . 4 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈𝐽)
53, 4elpwd 4549 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈 ∈ 𝒫 𝐽)
6 ispcmp 31123 . . . . . 6 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
7 pcmplfin.x . . . . . . 7 𝑋 = 𝐽
87iscref 31110 . . . . . 6 (𝐽 ∈ CovHasRef(LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)))
96, 8bitri 277 . . . . 5 (𝐽 ∈ Paracomp ↔ (𝐽 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)))
109simprbi 499 . . . 4 (𝐽 ∈ Paracomp → ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))
11103ad2ant1 1129 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))
12 simp3 1134 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑋 = 𝑈)
13 unieq 4851 . . . . . 6 (𝑢 = 𝑈 𝑢 = 𝑈)
1413eqeq2d 2834 . . . . 5 (𝑢 = 𝑈 → (𝑋 = 𝑢𝑋 = 𝑈))
15 breq2 5072 . . . . . 6 (𝑢 = 𝑈 → (𝑣Ref𝑢𝑣Ref𝑈))
1615rexbidv 3299 . . . . 5 (𝑢 = 𝑈 → (∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢 ↔ ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈))
1714, 16imbi12d 347 . . . 4 (𝑢 = 𝑈 → ((𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) ↔ (𝑋 = 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)))
1817rspcv 3620 . . 3 (𝑈 ∈ 𝒫 𝐽 → (∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) → (𝑋 = 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)))
195, 11, 12, 18syl3c 66 . 2 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)
20 rexin 4218 . 2 (∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈 ↔ ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
2119, 20sylib 220 1 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  𝒫 cpw 4541   cuni 4840   class class class wbr 5068  cfv 6357  Topctop 21503  Refcref 22112  LocFinclocfin 22114  CovHasRefccref 31108  Paracompcpcmp 31121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-cref 31109  df-pcmp 31122
This theorem is referenced by:  pcmplfinf  31127
  Copyright terms: Public domain W3C validator