MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmptcl Structured version   Visualization version   GIF version

Theorem pcmptcl 16226
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
Assertion
Ref Expression
pcmptcl (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))

Proof of Theorem pcmptcl
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . 4 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
2 pm2.27 42 . . . . . . . 8 (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0))
3 iftrue 4472 . . . . . . . . . . 11 (𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = (𝑛𝐴))
43adantr 483 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = (𝑛𝐴))
5 prmnn 16017 . . . . . . . . . . 11 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
6 nnexpcl 13441 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑛𝐴) ∈ ℕ)
75, 6sylan 582 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑛𝐴) ∈ ℕ)
84, 7eqeltrd 2913 . . . . . . . . 9 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
98ex 415 . . . . . . . 8 (𝑛 ∈ ℙ → (𝐴 ∈ ℕ0 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
102, 9syld 47 . . . . . . 7 (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
11 iffalse 4475 . . . . . . . . 9 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = 1)
12 1nn 11648 . . . . . . . . 9 1 ∈ ℕ
1311, 12eqeltrdi 2921 . . . . . . . 8 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
1413a1d 25 . . . . . . 7 𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
1510, 14pm2.61i 184 . . . . . 6 ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
1615a1d 25 . . . . 5 ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
1716ralimi2 3157 . . . 4 (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
181, 17syl 17 . . 3 (𝜑 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
19 pcmpt.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
2019fmpt 6873 . . 3 (∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ ↔ 𝐹:ℕ⟶ℕ)
2118, 20sylib 220 . 2 (𝜑𝐹:ℕ⟶ℕ)
22 nnuz 12280 . . 3 ℕ = (ℤ‘1)
23 1zzd 12012 . . 3 (𝜑 → 1 ∈ ℤ)
2421ffvelrnda 6850 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℕ)
25 nnmulcl 11660 . . . 4 ((𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑘 · 𝑝) ∈ ℕ)
2625adantl 484 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑘 · 𝑝) ∈ ℕ)
2722, 23, 24, 26seqf 13390 . 2 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
2821, 27jca 514 1 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  ifcif 4466  cmpt 5145  wf 6350  (class class class)co 7155  1c1 10537   · cmul 10541  cn 11637  0cn0 11896  seqcseq 13368  cexp 13428  cprime 16014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-seq 13369  df-exp 13429  df-prm 16015
This theorem is referenced by:  pcmpt  16227  pcmpt2  16228  pcmptdvds  16229  pcprod  16230  1arithlem4  16261  bposlem3  25861  bposlem5  25863  bposlem6  25864
  Copyright terms: Public domain W3C validator