MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcneg Structured version   Visualization version   GIF version

Theorem pcneg 15776
Description: The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcneg ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴))

Proof of Theorem pcneg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 11979 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 zcn 11570 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
32ad2antrl 766 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ ℂ)
4 nncn 11216 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
54ad2antll 767 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ ℂ)
6 nnne0 11241 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
76ad2antll 767 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ 0)
83, 5, 7divnegd 11002 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → -(𝑥 / 𝑦) = (-𝑥 / 𝑦))
98oveq2d 6825 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (-𝑥 / 𝑦)))
10 neg0 10515 . . . . . . . . . 10 -0 = 0
11 simpr 479 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → 𝑥 = 0)
1211negeqd 10463 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → -𝑥 = -0)
1310, 12, 113eqtr4a 2816 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → -𝑥 = 𝑥)
1413oveq1d 6824 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → (-𝑥 / 𝑦) = (𝑥 / 𝑦))
1514oveq2d 6825 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
16 simpll 807 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑃 ∈ ℙ)
17 simplrl 819 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℤ)
1817znegcld 11672 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → -𝑥 ∈ ℤ)
19 simpr 479 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑥 ≠ 0)
202negne0bd 10573 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 ≠ 0 ↔ -𝑥 ≠ 0))
2117, 20syl 17 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑥 ≠ 0 ↔ -𝑥 ≠ 0))
2219, 21mpbid 222 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → -𝑥 ≠ 0)
23 simplrr 820 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑦 ∈ ℕ)
24 pcdiv 15755 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (-𝑥 ∈ ℤ ∧ -𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (-𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)))
2516, 18, 22, 23, 24syl121anc 1482 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)))
26 pcdiv 15755 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
2716, 17, 19, 23, 26syl121anc 1482 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
28 eqid 2756 . . . . . . . . . . . . 13 sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < )
2928pczpre 15750 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (-𝑥 ∈ ℤ ∧ -𝑥 ≠ 0)) → (𝑃 pCnt -𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
3016, 18, 22, 29syl12anc 1475 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt -𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
31 eqid 2756 . . . . . . . . . . . . . 14 sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < )
3231pczpre 15750 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < ))
33 prmz 15587 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
34 zexpcl 13065 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑃𝑦) ∈ ℤ)
3533, 34sylan 489 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0) → (𝑃𝑦) ∈ ℤ)
36 simpl 474 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℤ)
37 dvdsnegb 15197 . . . . . . . . . . . . . . . . 17 (((𝑃𝑦) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑃𝑦) ∥ 𝑥 ↔ (𝑃𝑦) ∥ -𝑥))
3835, 36, 37syl2an 495 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → ((𝑃𝑦) ∥ 𝑥 ↔ (𝑃𝑦) ∥ -𝑥))
3938an32s 881 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃𝑦) ∥ 𝑥 ↔ (𝑃𝑦) ∥ -𝑥))
4039rabbidva 3324 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → {𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥} = {𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥})
4140supeq1d 8513 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
4232, 41eqtrd 2790 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
4316, 17, 19, 42syl12anc 1475 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
4430, 43eqtr4d 2793 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt -𝑥) = (𝑃 pCnt 𝑥))
4544oveq1d 6824 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
4627, 45eqtr4d 2793 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)))
4725, 46eqtr4d 2793 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
4815, 47pm2.61dane 3015 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
499, 48eqtrd 2790 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
50 negeq 10461 . . . . . . 7 (𝐴 = (𝑥 / 𝑦) → -𝐴 = -(𝑥 / 𝑦))
5150oveq2d 6825 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt -(𝑥 / 𝑦)))
52 oveq2 6817 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦)))
5351, 52eqeq12d 2771 . . . . 5 (𝐴 = (𝑥 / 𝑦) → ((𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴) ↔ (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦))))
5449, 53syl5ibrcom 237 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)))
5554rexlimdvva 3172 . . 3 (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)))
561, 55syl5bi 232 . 2 (𝑃 ∈ ℙ → (𝐴 ∈ ℚ → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)))
5756imp 444 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1628  wcel 2135  wne 2928  wrex 3047  {crab 3050   class class class wbr 4800  (class class class)co 6809  supcsup 8507  cc 10122  cr 10123  0cc0 10124   < clt 10262  cmin 10454  -cneg 10455   / cdiv 10872  cn 11208  0cn0 11480  cz 11565  cq 11977  cexp 13050  cdvds 15178  cprime 15583   pCnt cpc 15739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-2o 7726  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-inf 8510  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-n0 11481  df-z 11566  df-uz 11876  df-q 11978  df-rp 12022  df-fl 12783  df-mod 12859  df-seq 12992  df-exp 13051  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-dvds 15179  df-gcd 15415  df-prm 15584  df-pc 15740
This theorem is referenced by:  pcabs  15777  pcadd2  15792  lgsneg  25241
  Copyright terms: Public domain W3C validator