MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pco1 Structured version   Visualization version   GIF version

Theorem pco1 23613
Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pco1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))

Proof of Theorem pco1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2pcoval 23609 . . 3 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
43fveq1d 6666 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1))
5 1elunit 12850 . . 3 1 ∈ (0[,]1)
6 halflt1 11849 . . . . . . . 8 (1 / 2) < 1
7 halfre 11845 . . . . . . . . 9 (1 / 2) ∈ ℝ
8 1re 10635 . . . . . . . . 9 1 ∈ ℝ
97, 8ltnlei 10755 . . . . . . . 8 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
106, 9mpbi 232 . . . . . . 7 ¬ 1 ≤ (1 / 2)
11 breq1 5061 . . . . . . 7 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
1210, 11mtbiri 329 . . . . . 6 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
1312iffalsed 4477 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘((2 · 𝑥) − 1)))
14 oveq2 7158 . . . . . . . . 9 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
15 2t1e2 11794 . . . . . . . . 9 (2 · 1) = 2
1614, 15syl6eq 2872 . . . . . . . 8 (𝑥 = 1 → (2 · 𝑥) = 2)
1716oveq1d 7165 . . . . . . 7 (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1))
18 2m1e1 11757 . . . . . . 7 (2 − 1) = 1
1917, 18syl6eq 2872 . . . . . 6 (𝑥 = 1 → ((2 · 𝑥) − 1) = 1)
2019fveq2d 6668 . . . . 5 (𝑥 = 1 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘1))
2113, 20eqtrd 2856 . . . 4 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘1))
22 eqid 2821 . . . 4 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
23 fvex 6677 . . . 4 (𝐺‘1) ∈ V
2421, 22, 23fvmpt 6762 . . 3 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1))
255, 24ax-mp 5 . 2 ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1)
264, 25syl6eq 2872 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2110  ifcif 4466   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  2c2 11686  [,]cicc 12735   Cn ccn 21826  IIcii 23477  *𝑝cpco 23598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-icc 12739  df-top 21496  df-topon 21513  df-cn 21829  df-pco 23603
This theorem is referenced by:  pcohtpylem  23617  pcorevlem  23624  pcophtb  23627  om1addcl  23631  pi1xfrf  23651  pi1xfr  23653  pi1xfrcnvlem  23654  pi1coghm  23659  connpconn  32477  sconnpht2  32480  cvmlift3lem6  32566
  Copyright terms: Public domain W3C validator