Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpylem Structured version   Visualization version   GIF version

Theorem pcohtpylem 22800
 Description: Lemma for pcohtpy 22801. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcohtpy.5 (𝜑𝐹( ≃ph𝐽)𝐻)
pcohtpy.6 (𝜑𝐺( ≃ph𝐽)𝐾)
pcohtpylem.7 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)))
pcohtpylem.8 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
pcohtpylem.9 (𝜑𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾))
Assertion
Ref Expression
pcohtpylem (𝜑𝑃 ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)

Proof of Theorem pcohtpylem
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5 (𝜑𝐹( ≃ph𝐽)𝐻)
2 isphtpc 22774 . . . . 5 (𝐹( ≃ph𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
31, 2sylib 208 . . . 4 (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
43simp1d 1071 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
5 pcohtpy.6 . . . . 5 (𝜑𝐺( ≃ph𝐽)𝐾)
6 isphtpc 22774 . . . . 5 (𝐺( ≃ph𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
75, 6sylib 208 . . . 4 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
87simp1d 1071 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
9 pcohtpy.4 . . 3 (𝜑 → (𝐹‘1) = (𝐺‘0))
104, 8, 9pcocn 22798 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
113simp2d 1072 . . 3 (𝜑𝐻 ∈ (II Cn 𝐽))
127simp2d 1072 . . 3 (𝜑𝐾 ∈ (II Cn 𝐽))
13 pcohtpylem.8 . . . . . 6 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
144, 11, 13phtpy01 22765 . . . . 5 (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
1514simprd 479 . . . 4 (𝜑 → (𝐹‘1) = (𝐻‘1))
16 pcohtpylem.9 . . . . . 6 (𝜑𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾))
178, 12, 16phtpy01 22765 . . . . 5 (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
1817simpld 475 . . . 4 (𝜑 → (𝐺‘0) = (𝐾‘0))
199, 15, 183eqtr3d 2662 . . 3 (𝜑 → (𝐻‘1) = (𝐾‘0))
2011, 12, 19pcocn 22798 . 2 (𝜑 → (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽))
21 pcohtpylem.7 . . 3 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)))
22 eqid 2620 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
23 eqid 2620 . . . 4 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
24 eqid 2620 . . . 4 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
25 dfii2 22666 . . . 4 II = ((topGen‘ran (,)) ↾t (0[,]1))
26 0red 10026 . . . 4 (𝜑 → 0 ∈ ℝ)
27 1red 10040 . . . 4 (𝜑 → 1 ∈ ℝ)
28 halfre 11231 . . . . . 6 (1 / 2) ∈ ℝ
29 0re 10025 . . . . . . 7 0 ∈ ℝ
30 halfgt0 11233 . . . . . . 7 0 < (1 / 2)
3129, 28, 30ltleii 10145 . . . . . 6 0 ≤ (1 / 2)
32 1re 10024 . . . . . . 7 1 ∈ ℝ
33 halflt1 11235 . . . . . . 7 (1 / 2) < 1
3428, 32, 33ltleii 10145 . . . . . 6 (1 / 2) ≤ 1
3529, 32elicc2i 12224 . . . . . 6 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
3628, 31, 34, 35mpbir3an 1242 . . . . 5 (1 / 2) ∈ (0[,]1)
3736a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ (0[,]1))
38 iitopon 22663 . . . . 5 II ∈ (TopOn‘(0[,]1))
3938a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
409adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0))
414, 11, 13phtpyi 22764 . . . . . . . 8 ((𝜑𝑦 ∈ (0[,]1)) → ((0𝑀𝑦) = (𝐹‘0) ∧ (1𝑀𝑦) = (𝐹‘1)))
4241simprd 479 . . . . . . 7 ((𝜑𝑦 ∈ (0[,]1)) → (1𝑀𝑦) = (𝐹‘1))
4342adantrl 751 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (𝐹‘1))
448, 12, 16phtpyi 22764 . . . . . . . 8 ((𝜑𝑦 ∈ (0[,]1)) → ((0𝑁𝑦) = (𝐺‘0) ∧ (1𝑁𝑦) = (𝐺‘1)))
4544simpld 475 . . . . . . 7 ((𝜑𝑦 ∈ (0[,]1)) → (0𝑁𝑦) = (𝐺‘0))
4645adantrl 751 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (0𝑁𝑦) = (𝐺‘0))
4740, 43, 463eqtr4d 2664 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (0𝑁𝑦))
48 simprl 793 . . . . . . . 8 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 = (1 / 2))
4948oveq2d 6651 . . . . . . 7 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = (2 · (1 / 2)))
50 2cn 11076 . . . . . . . 8 2 ∈ ℂ
51 2ne0 11098 . . . . . . . 8 2 ≠ 0
5250, 51recidi 10741 . . . . . . 7 (2 · (1 / 2)) = 1
5349, 52syl6eq 2670 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = 1)
5453oveq1d 6650 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (1𝑀𝑦))
5553oveq1d 6650 . . . . . . 7 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = (1 − 1))
56 1m1e0 11074 . . . . . . 7 (1 − 1) = 0
5755, 56syl6eq 2670 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = 0)
5857oveq1d 6650 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (((2 · 𝑥) − 1)𝑁𝑦) = (0𝑁𝑦))
5947, 54, 583eqtr4d 2664 . . . 4 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (((2 · 𝑥) − 1)𝑁𝑦))
60 retopon 22548 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
61 iccssre 12240 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
6229, 28, 61mp2an 707 . . . . . . 7 (0[,](1 / 2)) ⊆ ℝ
63 resttopon 20946 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
6460, 62, 63mp2an 707 . . . . . 6 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
6564a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
6665, 39cnmpt1st 21452 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
6723iihalf1cn 22712 . . . . . . 7 (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
6867a1i 11 . . . . . 6 (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
69 oveq2 6643 . . . . . 6 (𝑧 = 𝑥 → (2 · 𝑧) = (2 · 𝑥))
7065, 39, 66, 65, 68, 69cnmpt21 21455 . . . . 5 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ (2 · 𝑥)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
7165, 39cnmpt2nd 21453 . . . . 5 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
724, 11phtpycn 22763 . . . . . 6 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽))
7372, 13sseldd 3596 . . . . 5 (𝜑𝑀 ∈ ((II ×t II) Cn 𝐽))
7465, 39, 70, 71, 73cnmpt22f 21459 . . . 4 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥)𝑀𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn 𝐽))
75 iccssre 12240 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
7628, 32, 75mp2an 707 . . . . . . 7 ((1 / 2)[,]1) ⊆ ℝ
77 resttopon 20946 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
7860, 76, 77mp2an 707 . . . . . 6 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
7978a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
8079, 39cnmpt1st 21452 . . . . . 6 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
8124iihalf2cn 22714 . . . . . . 7 (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
8281a1i 11 . . . . . 6 (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
8369oveq1d 6650 . . . . . 6 (𝑧 = 𝑥 → ((2 · 𝑧) − 1) = ((2 · 𝑥) − 1))
8479, 39, 80, 79, 82, 83cnmpt21 21455 . . . . 5 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
8579, 39cnmpt2nd 21453 . . . . 5 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
868, 12phtpycn 22763 . . . . . 6 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ ((II ×t II) Cn 𝐽))
8786, 16sseldd 3596 . . . . 5 (𝜑𝑁 ∈ ((II ×t II) Cn 𝐽))
8879, 39, 84, 85, 87cnmpt22f 21459 . . . 4 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ (((2 · 𝑥) − 1)𝑁𝑦)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽))
8922, 23, 24, 25, 26, 27, 37, 39, 59, 74, 88cnmpt2pc 22708 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦))) ∈ ((II ×t II) Cn 𝐽))
9021, 89syl5eqel 2703 . 2 (𝜑𝑃 ∈ ((II ×t II) Cn 𝐽))
91 simpll 789 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑)
92 elii1 22715 . . . . . . . . 9 (𝑠 ∈ (0[,](1 / 2)) ↔ (𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)))
93 iihalf1 22711 . . . . . . . . 9 (𝑠 ∈ (0[,](1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
9492, 93sylbir 225 . . . . . . . 8 ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
9594adantll 749 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
964, 11phtpyhtpy 22762 . . . . . . . . 9 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ (𝐹(II Htpy 𝐽)𝐻))
9796, 13sseldd 3596 . . . . . . . 8 (𝜑𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻))
9839, 4, 11, 97htpyi 22754 . . . . . . 7 ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))))
9991, 95, 98syl2anc 692 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))))
10099simpld 475 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)))
101 iftrue 4083 . . . . . 6 (𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = ((2 · 𝑠)𝑀0))
102101adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = ((2 · 𝑠)𝑀0))
103 iftrue 4083 . . . . . 6 (𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))) = (𝐹‘(2 · 𝑠)))
104103adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))) = (𝐹‘(2 · 𝑠)))
105100, 102, 1043eqtr4d 2664 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
106 simpll 789 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑)
107 elii2 22716 . . . . . . . . 9 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
108107adantll 749 . . . . . . . 8 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
109 iihalf2 22713 . . . . . . . 8 (𝑠 ∈ ((1 / 2)[,]1) → ((2 · 𝑠) − 1) ∈ (0[,]1))
110108, 109syl 17 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
1118, 12phtpyhtpy 22762 . . . . . . . . 9 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ (𝐺(II Htpy 𝐽)𝐾))
112111, 16sseldd 3596 . . . . . . . 8 (𝜑𝑁 ∈ (𝐺(II Htpy 𝐽)𝐾))
11339, 8, 12, 112htpyi 22754 . . . . . . 7 ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1)) → ((((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))))
114106, 110, 113syl2anc 692 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))))
115114simpld 475 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)))
116 iffalse 4086 . . . . . 6 𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = (((2 · 𝑠) − 1)𝑁0))
117116adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = (((2 · 𝑠) − 1)𝑁0))
118 iffalse 4086 . . . . . 6 𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))) = (𝐺‘((2 · 𝑠) − 1)))
119118adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))) = (𝐺‘((2 · 𝑠) − 1)))
120115, 117, 1193eqtr4d 2664 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
121105, 120pm2.61dan 831 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
122 simpr 477 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
123 0elunit 12275 . . . 4 0 ∈ (0[,]1)
124 simpl 473 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
125124breq1d 4654 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
126124oveq2d 6651 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑥) = (2 · 𝑠))
127 simpr 477 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
128126, 127oveq12d 6653 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀0))
129126oveq1d 6650 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1))
130129, 127oveq12d 6653 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁0))
131125, 128, 130ifbieq12d 4104 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
132 ovex 6663 . . . . . 6 ((2 · 𝑠)𝑀0) ∈ V
133 ovex 6663 . . . . . 6 (((2 · 𝑠) − 1)𝑁0) ∈ V
134132, 133ifex 4147 . . . . 5 if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) ∈ V
135131, 21, 134ovmpt2a 6776 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
136122, 123, 135sylancl 693 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
1374, 8pcovalg 22793 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
138121, 136, 1373eqtr4d 2664 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = ((𝐹(*𝑝𝐽)𝐺)‘𝑠))
13999simprd 479 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠)))
140 iftrue 4083 . . . . . 6 (𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = ((2 · 𝑠)𝑀1))
141140adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = ((2 · 𝑠)𝑀1))
142 iftrue 4083 . . . . . 6 (𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))) = (𝐻‘(2 · 𝑠)))
143142adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))) = (𝐻‘(2 · 𝑠)))
144139, 141, 1433eqtr4d 2664 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
145114simprd 479 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1)))
146 iffalse 4086 . . . . . 6 𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = (((2 · 𝑠) − 1)𝑁1))
147146adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = (((2 · 𝑠) − 1)𝑁1))
148 iffalse 4086 . . . . . 6 𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))) = (𝐾‘((2 · 𝑠) − 1)))
149148adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))) = (𝐾‘((2 · 𝑠) − 1)))
150145, 147, 1493eqtr4d 2664 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
151144, 150pm2.61dan 831 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
152 1elunit 12276 . . . 4 1 ∈ (0[,]1)
153 simpl 473 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
154153breq1d 4654 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
155153oveq2d 6651 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑥) = (2 · 𝑠))
156 simpr 477 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
157155, 156oveq12d 6653 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀1))
158155oveq1d 6650 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1))
159158, 156oveq12d 6653 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁1))
160154, 157, 159ifbieq12d 4104 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
161 ovex 6663 . . . . . 6 ((2 · 𝑠)𝑀1) ∈ V
162 ovex 6663 . . . . . 6 (((2 · 𝑠) − 1)𝑁1) ∈ V
163161, 162ifex 4147 . . . . 5 if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) ∈ V
164160, 21, 163ovmpt2a 6776 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
165122, 152, 164sylancl 693 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
16611, 12pcovalg 22793 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐻(*𝑝𝐽)𝐾)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
167151, 165, 1663eqtr4d 2664 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = ((𝐻(*𝑝𝐽)𝐾)‘𝑠))
1684, 11, 13phtpyi 22764 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝑀𝑠) = (𝐹‘0) ∧ (1𝑀𝑠) = (𝐹‘1)))
169168simpld 475 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0))
170 simpl 473 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
171170, 31syl6eqbr 4683 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 ≤ (1 / 2))
172171iftrued 4085 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = ((2 · 𝑥)𝑀𝑦))
173170oveq2d 6651 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 0))
174 2t0e0 11168 . . . . . . . 8 (2 · 0) = 0
175173, 174syl6eq 2670 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 0)
176 simpr 477 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
177175, 176oveq12d 6653 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑥)𝑀𝑦) = (0𝑀𝑠))
178172, 177eqtrd 2654 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (0𝑀𝑠))
179 ovex 6663 . . . . 5 (0𝑀𝑠) ∈ V
180178, 21, 179ovmpt2a 6776 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠))
181123, 122, 180sylancr 694 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠))
1824, 8pco0 22795 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
183182adantr 481 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
184169, 181, 1833eqtr4d 2664 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = ((𝐹(*𝑝𝐽)𝐺)‘0))
1858, 12, 16phtpyi 22764 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝑁𝑠) = (𝐺‘0) ∧ (1𝑁𝑠) = (𝐺‘1)))
186185simprd 479 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑁𝑠) = (𝐺‘1))
18728, 32ltnlei 10143 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
18833, 187mpbi 220 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
189 simpl 473 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
190189breq1d 4654 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
191188, 190mtbiri 317 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ¬ 𝑥 ≤ (1 / 2))
192191iffalsed 4088 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (((2 · 𝑥) − 1)𝑁𝑦))
193189oveq2d 6651 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 1))
194 2t1e2 11161 . . . . . . . . . 10 (2 · 1) = 2
195193, 194syl6eq 2670 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 2)
196195oveq1d 6650 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = (2 − 1))
197 2m1e1 11120 . . . . . . . 8 (2 − 1) = 1
198196, 197syl6eq 2670 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = 1)
199 simpr 477 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
200198, 199oveq12d 6653 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((2 · 𝑥) − 1)𝑁𝑦) = (1𝑁𝑠))
201192, 200eqtrd 2654 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (1𝑁𝑠))
202 ovex 6663 . . . . 5 (1𝑁𝑠) ∈ V
203201, 21, 202ovmpt2a 6776 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠))
204152, 122, 203sylancr 694 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠))
2054, 8pco1 22796 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
206205adantr 481 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
207186, 204, 2063eqtr4d 2664 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = ((𝐹(*𝑝𝐽)𝐺)‘1))
20810, 20, 90, 138, 167, 184, 207isphtpy2d 22767 1 (𝜑𝑃 ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1481   ∈ wcel 1988   ≠ wne 2791   ⊆ wss 3567  ∅c0 3907  ifcif 4077   class class class wbr 4644   ↦ cmpt 4720  ran crn 5105  ‘cfv 5876  (class class class)co 6635   ↦ cmpt2 6637  ℝcr 9920  0cc0 9921  1c1 9922   · cmul 9926   < clt 10059   ≤ cle 10060   − cmin 10251   / cdiv 10669  2c2 11055  (,)cioo 12160  [,]cicc 12163   ↾t crest 16062  topGenctg 16079  TopOnctopon 20696   Cn ccn 21009   ×t ctx 21344  IIcii 22659   Htpy chtpy 22747  PHtpycphtpy 22748   ≃phcphtpc 22749  *𝑝cpco 22781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-mulf 10001 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-icc 12167  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-cn 21012  df-cnp 21013  df-tx 21346  df-hmeo 21539  df-xms 22106  df-ms 22107  df-tms 22108  df-ii 22661  df-htpy 22750  df-phtpy 22751  df-phtpc 22772  df-pco 22786 This theorem is referenced by:  pcohtpy  22801
 Copyright terms: Public domain W3C validator