Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconnconn Structured version   Visualization version   GIF version

Theorem pconnconn 31187
Description: A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
pconnconn (𝐽 ∈ PConn → 𝐽 ∈ Conn)

Proof of Theorem pconnconn
Dummy variables 𝑎 𝑏 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1038 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥𝑦) = ∅))
2 n0 3923 . . . . . . . 8 (𝑥 ≠ ∅ ↔ ∃𝑎 𝑎𝑥)
3 n0 3923 . . . . . . . 8 (𝑦 ≠ ∅ ↔ ∃𝑏 𝑏𝑦)
42, 3anbi12i 732 . . . . . . 7 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ (∃𝑎 𝑎𝑥 ∧ ∃𝑏 𝑏𝑦))
5 eeanv 2180 . . . . . . 7 (∃𝑎𝑏(𝑎𝑥𝑏𝑦) ↔ (∃𝑎 𝑎𝑥 ∧ ∃𝑏 𝑏𝑦))
64, 5bitr4i 267 . . . . . 6 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ ∃𝑎𝑏(𝑎𝑥𝑏𝑦))
7 simpll 789 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝐽 ∈ PConn)
8 simprll 801 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑎𝑥)
9 simplrl 799 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑥𝐽)
10 elunii 4432 . . . . . . . . . . 11 ((𝑎𝑥𝑥𝐽) → 𝑎 𝐽)
118, 9, 10syl2anc 692 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑎 𝐽)
12 simprlr 802 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑏𝑦)
13 simplrr 800 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑦𝐽)
14 elunii 4432 . . . . . . . . . . 11 ((𝑏𝑦𝑦𝐽) → 𝑏 𝐽)
1512, 13, 14syl2anc 692 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑏 𝐽)
16 eqid 2620 . . . . . . . . . . 11 𝐽 = 𝐽
1716pconncn 31180 . . . . . . . . . 10 ((𝐽 ∈ PConn ∧ 𝑎 𝐽𝑏 𝐽) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))
187, 11, 15, 17syl3anc 1324 . . . . . . . . 9 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))
19 simplrr 800 . . . . . . . . . . . . 13 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) = ∅)
20 simplrr 800 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽) → (𝑓‘1) = 𝑏)
2120adantl 482 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘1) = 𝑏)
22 iiuni 22665 . . . . . . . . . . . . . . . . 17 (0[,]1) = II
23 iiconn 22671 . . . . . . . . . . . . . . . . . 18 II ∈ Conn
2423a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → II ∈ Conn)
25 simprll 801 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑓 ∈ (II Cn 𝐽))
269adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑥𝐽)
27 uncom 3749 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑥) = (𝑥𝑦)
28 simprr 795 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) = 𝐽)
2927, 28syl5eq 2666 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑦𝑥) = 𝐽)
3013adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑦𝐽)
31 elssuni 4458 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐽𝑦 𝐽)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑦 𝐽)
33 incom 3797 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑥) = (𝑥𝑦)
3433, 19syl5eq 2666 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑦𝑥) = ∅)
35 uneqdifeq 4048 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 𝐽 ∧ (𝑦𝑥) = ∅) → ((𝑦𝑥) = 𝐽 ↔ ( 𝐽𝑦) = 𝑥))
3632, 34, 35syl2anc 692 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ((𝑦𝑥) = 𝐽 ↔ ( 𝐽𝑦) = 𝑥))
3729, 36mpbid 222 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ( 𝐽𝑦) = 𝑥)
38 pconntop 31181 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ PConn → 𝐽 ∈ Top)
3938ad3antrrr 765 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝐽 ∈ Top)
4016opncld 20818 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
4139, 30, 40syl2anc 692 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
4237, 41eqeltrrd 2700 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
43 0elunit 12275 . . . . . . . . . . . . . . . . . 18 0 ∈ (0[,]1)
4443a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 0 ∈ (0[,]1))
45 simplrl 799 . . . . . . . . . . . . . . . . . . 19 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽) → (𝑓‘0) = 𝑎)
4645adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘0) = 𝑎)
478adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑎𝑥)
4846, 47eqeltrd 2699 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘0) ∈ 𝑥)
4922, 24, 25, 26, 42, 44, 48conncn 21210 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑓:(0[,]1)⟶𝑥)
50 1elunit 12276 . . . . . . . . . . . . . . . 16 1 ∈ (0[,]1)
51 ffvelrn 6343 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑥 ∧ 1 ∈ (0[,]1)) → (𝑓‘1) ∈ 𝑥)
5249, 50, 51sylancl 693 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘1) ∈ 𝑥)
5321, 52eqeltrrd 2700 . . . . . . . . . . . . . 14 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑏𝑥)
5412adantr 481 . . . . . . . . . . . . . 14 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑏𝑦)
55 inelcm 4023 . . . . . . . . . . . . . 14 ((𝑏𝑥𝑏𝑦) → (𝑥𝑦) ≠ ∅)
5653, 54, 55syl2anc 692 . . . . . . . . . . . . 13 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) ≠ ∅)
5719, 56pm2.21ddne 2875 . . . . . . . . . . . 12 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ¬ (𝑥𝑦) = 𝐽)
5857expr 642 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ((𝑥𝑦) = 𝐽 → ¬ (𝑥𝑦) = 𝐽))
5958pm2.01d 181 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ¬ (𝑥𝑦) = 𝐽)
6059neqned 2798 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → (𝑥𝑦) ≠ 𝐽)
6118, 60rexlimddv 3031 . . . . . . . 8 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → (𝑥𝑦) ≠ 𝐽)
6261exp32 630 . . . . . . 7 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑎𝑥𝑏𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
6362exlimdvv 1860 . . . . . 6 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → (∃𝑎𝑏(𝑎𝑥𝑏𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
646, 63syl5bi 232 . . . . 5 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
6564impd 447 . . . 4 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
661, 65syl5bi 232 . . 3 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
6766ralrimivva 2968 . 2 (𝐽 ∈ PConn → ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
6816toptopon 20703 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
6938, 68sylib 208 . . 3 (𝐽 ∈ PConn → 𝐽 ∈ (TopOn‘ 𝐽))
70 dfconn2 21203 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽)))
7169, 70syl 17 . 2 (𝐽 ∈ PConn → (𝐽 ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽)))
7267, 71mpbird 247 1 (𝐽 ∈ PConn → 𝐽 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wex 1702  wcel 1988  wne 2791  wral 2909  wrex 2910  cdif 3564  cun 3565  cin 3566  wss 3567  c0 3907   cuni 4427  wf 5872  cfv 5876  (class class class)co 6635  0cc0 9921  1c1 9922  [,]cicc 12163  Topctop 20679  TopOnctopon 20696  Clsdccld 20801   Cn ccn 21009  Conncconn 21195  IIcii 22659  PConncpconn 31175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fi 8302  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ico 12166  df-icc 12167  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-rest 16064  df-topgen 16085  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-top 20680  df-topon 20697  df-bases 20731  df-cld 20804  df-cn 21012  df-conn 21196  df-ii 22661  df-pconn 31177
This theorem is referenced by:  resconn  31202  iinllyconn  31210  cvmlift2lem10  31268  cvmlift3  31284
  Copyright terms: Public domain W3C validator